多相铝合金搅拌摩擦焊组织转变发展条件的研究

S. Plitchenko, М. М. Grischenko
{"title":"多相铝合金搅拌摩擦焊组织转变发展条件的研究","authors":"S. Plitchenko, М. М. Grischenko","doi":"10.15802/stp2020/200746","DOIUrl":null,"url":null,"abstract":"Purpose. We aim to investigate the development conditions of structural transformations during friction stir welding (FSW); establish the nature of individual influence of structural components in achieving superplastic flow conditions; determine the influence nature of grain size on the groundmass microhardness during FSW. Methodology. Friction stir welding was performed on specially designed equipment. The material was 2.9 mm thick AMg6 aluminum alloy plates with the chemical content of alloying elements within the grade composition. The temperature and pressure from the tool on the edges during welding were determined on a specially designed stand. The tool pressing force to the metal was measured with a dynamometer type DC-0.1. Microhardness measured on the PMT-3 device with the indentation load of 0.05 N was taken as a characteristic of alloy microvolumes strength. Findings. Different degrees of rotation of the working tool and normal pressure to the edges determined the degree of metal heating and the quality of the seam formation. The influence degree of the technological parameters of the FSW on the metal heating temperature in the area of the working tool shoulder is estimated. The development of recrystallization processes in the conditions of two-phase alloys is considered. It has been shown that collective recrystallization is less determined by the volume fraction of the second phase, its dispersity and ability to interact with the metal matrix. The effect of the temperature gradient on the microhardness for the structures of the heat-affected zone is estimated under conditions of a practically unchanged grain morphology. Originality. The conditions for the development of structural transformations during friction stir welding and the influence mechanism of grain size on the matrix microhardness are determined. Exceeding the optimum temperature in the joint area during welding contributes to the diffusion accelerating along the boundaries between phases and grains, resulting in the formation of a concentration gradient of alloying elements and, first of all Mg, increasing the hardening effect of the solid solution state. Practical value. According to the results, the additive character of the hardening from the influence of the solid solution and grain boundaries under the conditions of superplastic flow is determined. A state close to the superplastic flow is achieved by reducing the effect of hardening the solid solution and increasing the contribution from the small grains boundaries. Achieving a state of superplastic deformation is possible by minimizing the effect of strain hardening.","PeriodicalId":120413,"journal":{"name":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESEARCH OF DEVELOPMENT CONDITIONS OF STRUCTURAL TRANSFORMATIONS DURING FRICTION STIR WELDING OF MULTIPHASE ALUMINUM ALLOY\",\"authors\":\"S. Plitchenko, М. М. Grischenko\",\"doi\":\"10.15802/stp2020/200746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. We aim to investigate the development conditions of structural transformations during friction stir welding (FSW); establish the nature of individual influence of structural components in achieving superplastic flow conditions; determine the influence nature of grain size on the groundmass microhardness during FSW. Methodology. Friction stir welding was performed on specially designed equipment. The material was 2.9 mm thick AMg6 aluminum alloy plates with the chemical content of alloying elements within the grade composition. The temperature and pressure from the tool on the edges during welding were determined on a specially designed stand. The tool pressing force to the metal was measured with a dynamometer type DC-0.1. Microhardness measured on the PMT-3 device with the indentation load of 0.05 N was taken as a characteristic of alloy microvolumes strength. Findings. Different degrees of rotation of the working tool and normal pressure to the edges determined the degree of metal heating and the quality of the seam formation. The influence degree of the technological parameters of the FSW on the metal heating temperature in the area of the working tool shoulder is estimated. The development of recrystallization processes in the conditions of two-phase alloys is considered. It has been shown that collective recrystallization is less determined by the volume fraction of the second phase, its dispersity and ability to interact with the metal matrix. The effect of the temperature gradient on the microhardness for the structures of the heat-affected zone is estimated under conditions of a practically unchanged grain morphology. Originality. The conditions for the development of structural transformations during friction stir welding and the influence mechanism of grain size on the matrix microhardness are determined. Exceeding the optimum temperature in the joint area during welding contributes to the diffusion accelerating along the boundaries between phases and grains, resulting in the formation of a concentration gradient of alloying elements and, first of all Mg, increasing the hardening effect of the solid solution state. Practical value. According to the results, the additive character of the hardening from the influence of the solid solution and grain boundaries under the conditions of superplastic flow is determined. A state close to the superplastic flow is achieved by reducing the effect of hardening the solid solution and increasing the contribution from the small grains boundaries. Achieving a state of superplastic deformation is possible by minimizing the effect of strain hardening.\",\"PeriodicalId\":120413,\"journal\":{\"name\":\"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15802/stp2020/200746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15802/stp2020/200746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的。研究搅拌摩擦焊(FSW)过程中结构转变的发展条件;建立结构部件在实现超塑性流动条件中的个别影响的性质;确定FSW过程中晶粒尺寸对基体显微硬度的影响性质。方法。在专门设计的设备上进行搅拌摩擦焊。材料为2.9 mm厚的AMg6铝合金板,合金元素的化学含量在牌号组成范围内。在焊接过程中,工具对边缘的温度和压力是在专门设计的支架上确定的。用DC-0.1型测力计测量了刀具对金属的压制力。采用压痕载荷为0.05 N时在PMT-3器件上测量的显微硬度作为合金微体积强度的特征。发现。不同程度的刀具旋转和对边缘的正常压力决定了金属加热的程度和焊缝形成的质量。估算了FSW工艺参数对刀肩区域金属加热温度的影响程度。讨论了两相合金条件下再结晶工艺的发展。研究表明,第二相的体积分数、分散性和与金属基体的相互作用能力对集体再结晶的影响较小。在晶粒形貌基本不变的条件下,估计了温度梯度对热影响区组织显微硬度的影响。创意。确定了搅拌摩擦焊接过程中组织转变发生的条件和晶粒尺寸对基体显微硬度的影响机理。焊接过程中,当接头区域温度超过最佳温度时,合金沿相和晶粒边界扩散加速,形成合金元素浓度梯度,首先是Mg的浓度梯度,增强了固溶体的硬化效果。实用价值。根据实验结果,确定了在超塑性流动条件下固溶体和晶界影响下硬化的附加特性。通过减小固溶体硬化的影响,增加小晶界的贡献,达到接近超塑性流动的状态。通过最小化应变硬化的影响,实现超塑性变形状态是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RESEARCH OF DEVELOPMENT CONDITIONS OF STRUCTURAL TRANSFORMATIONS DURING FRICTION STIR WELDING OF MULTIPHASE ALUMINUM ALLOY
Purpose. We aim to investigate the development conditions of structural transformations during friction stir welding (FSW); establish the nature of individual influence of structural components in achieving superplastic flow conditions; determine the influence nature of grain size on the groundmass microhardness during FSW. Methodology. Friction stir welding was performed on specially designed equipment. The material was 2.9 mm thick AMg6 aluminum alloy plates with the chemical content of alloying elements within the grade composition. The temperature and pressure from the tool on the edges during welding were determined on a specially designed stand. The tool pressing force to the metal was measured with a dynamometer type DC-0.1. Microhardness measured on the PMT-3 device with the indentation load of 0.05 N was taken as a characteristic of alloy microvolumes strength. Findings. Different degrees of rotation of the working tool and normal pressure to the edges determined the degree of metal heating and the quality of the seam formation. The influence degree of the technological parameters of the FSW on the metal heating temperature in the area of the working tool shoulder is estimated. The development of recrystallization processes in the conditions of two-phase alloys is considered. It has been shown that collective recrystallization is less determined by the volume fraction of the second phase, its dispersity and ability to interact with the metal matrix. The effect of the temperature gradient on the microhardness for the structures of the heat-affected zone is estimated under conditions of a practically unchanged grain morphology. Originality. The conditions for the development of structural transformations during friction stir welding and the influence mechanism of grain size on the matrix microhardness are determined. Exceeding the optimum temperature in the joint area during welding contributes to the diffusion accelerating along the boundaries between phases and grains, resulting in the formation of a concentration gradient of alloying elements and, first of all Mg, increasing the hardening effect of the solid solution state. Practical value. According to the results, the additive character of the hardening from the influence of the solid solution and grain boundaries under the conditions of superplastic flow is determined. A state close to the superplastic flow is achieved by reducing the effect of hardening the solid solution and increasing the contribution from the small grains boundaries. Achieving a state of superplastic deformation is possible by minimizing the effect of strain hardening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Place of Transport in the Sales Policy of the Industrial Enterprise Innovative Tools for Improvement of Construction Organization Processes in the Conditions of Dense Urban Development Identification of the Program Text and Algorithm Correspondence Based on the Control Graph Constructive-Synthesizing Model Organizational and Functional Structure of the System of Information and Analytical Management of Construction Waste Streams Improving the Efficiency of Combination of Construction and Installation Works During the Underground Phase Under Conditions of Compacted Construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1