基于真实世界数据的救护车重新部署系统的比较

Niklas Strauß, Max Berrendorf, Tom Haider, M. Schubert
{"title":"基于真实世界数据的救护车重新部署系统的比较","authors":"Niklas Strauß, Max Berrendorf, Tom Haider, M. Schubert","doi":"10.1109/ICDMW58026.2022.00010","DOIUrl":null,"url":null,"abstract":"Modern Emergency Medical Services (EMS) benefit from real-time sensor information in various ways as they provide up-to-date location information and help assess current local emergency risks. A critical part of EMS is dynamic ambulance redeployment, i.e., the task of assigning idle ambulances to base stations throughout a community. Although there has been a considerable effort on methods to optimize emergency response systems, a comparison of proposed methods is generally difficult as reported results are mostly based on artificial and proprietary test beds. In this paper, we present a benchmark simulation environment for dynamic ambulance redeployment based on real emergency data from the city of San Francisco. Our proposed simulation environment is highly scalable and is compatible with modern reinforcement learning frameworks. We provide a comparative study of several state-of-the-art methods for various metrics. Results indicate that even simple baseline algorithms can perform considerably well in close-to-realistic settings. The code of our simulator is openly available at https://github.com/niklasdbs/ambusim.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparison of Ambulance Redeployment Systems on Real-World Data\",\"authors\":\"Niklas Strauß, Max Berrendorf, Tom Haider, M. Schubert\",\"doi\":\"10.1109/ICDMW58026.2022.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern Emergency Medical Services (EMS) benefit from real-time sensor information in various ways as they provide up-to-date location information and help assess current local emergency risks. A critical part of EMS is dynamic ambulance redeployment, i.e., the task of assigning idle ambulances to base stations throughout a community. Although there has been a considerable effort on methods to optimize emergency response systems, a comparison of proposed methods is generally difficult as reported results are mostly based on artificial and proprietary test beds. In this paper, we present a benchmark simulation environment for dynamic ambulance redeployment based on real emergency data from the city of San Francisco. Our proposed simulation environment is highly scalable and is compatible with modern reinforcement learning frameworks. We provide a comparative study of several state-of-the-art methods for various metrics. Results indicate that even simple baseline algorithms can perform considerably well in close-to-realistic settings. The code of our simulator is openly available at https://github.com/niklasdbs/ambusim.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代紧急医疗服务(EMS)以各种方式受益于实时传感器信息,因为它们提供最新的位置信息并帮助评估当前的当地紧急风险。EMS的一个关键部分是动态救护车重新部署,即将空闲救护车分配到整个社区的基站的任务。尽管在优化应急响应系统的方法上已经做出了相当大的努力,但由于报告的结果大多基于人工和专有的试验台,因此通常很难对所提出的方法进行比较。在本文中,我们提出了一个基于旧金山市真实急救数据的动态救护车调配基准模拟环境。我们提出的仿真环境具有高度可扩展性,并且与现代强化学习框架兼容。我们提供了几种最先进的方法对各种指标的比较研究。结果表明,即使是简单的基线算法也可以在接近现实的设置中表现得相当好。我们的模拟器的代码可以在https://github.com/niklasdbs/ambusim上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparison of Ambulance Redeployment Systems on Real-World Data
Modern Emergency Medical Services (EMS) benefit from real-time sensor information in various ways as they provide up-to-date location information and help assess current local emergency risks. A critical part of EMS is dynamic ambulance redeployment, i.e., the task of assigning idle ambulances to base stations throughout a community. Although there has been a considerable effort on methods to optimize emergency response systems, a comparison of proposed methods is generally difficult as reported results are mostly based on artificial and proprietary test beds. In this paper, we present a benchmark simulation environment for dynamic ambulance redeployment based on real emergency data from the city of San Francisco. Our proposed simulation environment is highly scalable and is compatible with modern reinforcement learning frameworks. We provide a comparative study of several state-of-the-art methods for various metrics. Results indicate that even simple baseline algorithms can perform considerably well in close-to-realistic settings. The code of our simulator is openly available at https://github.com/niklasdbs/ambusim.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1