基于随机森林算法的糖尿病视网膜病变早期诊断

Nihel Zaaboub, A. Douik
{"title":"基于随机森林算法的糖尿病视网膜病变早期诊断","authors":"Nihel Zaaboub, A. Douik","doi":"10.1109/ATSIP49331.2020.9231795","DOIUrl":null,"url":null,"abstract":"The diabetic retinopathy is one of the most frequent causes of visual damage and vision loss. It can cause blindness in the absence of the diagnosis and the treatment. The automatic detection of the hard exudate in color fundus retinal images is an important task to early diagnosis the diabetic retinopathy. In this paper, a hard exudate detection algorithm is proposed. It is based on the application of a learning method to retinal image with removed optic disk. This paper proposes the use of Random Forest algorithm with a specific parameter from which a binary mask of exudate is obtained after intensity thresholding. It achieves 91.40% for sensitivity and 94.38% for the accuracy.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Early Diagnosis of Diabetic Retinopathy using Random Forest Algorithm\",\"authors\":\"Nihel Zaaboub, A. Douik\",\"doi\":\"10.1109/ATSIP49331.2020.9231795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diabetic retinopathy is one of the most frequent causes of visual damage and vision loss. It can cause blindness in the absence of the diagnosis and the treatment. The automatic detection of the hard exudate in color fundus retinal images is an important task to early diagnosis the diabetic retinopathy. In this paper, a hard exudate detection algorithm is proposed. It is based on the application of a learning method to retinal image with removed optic disk. This paper proposes the use of Random Forest algorithm with a specific parameter from which a binary mask of exudate is obtained after intensity thresholding. It achieves 91.40% for sensitivity and 94.38% for the accuracy.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

糖尿病视网膜病变是造成视力损害和丧失的最常见原因之一。在没有诊断和治疗的情况下,它会导致失明。彩色眼底视网膜图像中硬渗出物的自动检测是糖尿病视网膜病变早期诊断的重要任务。本文提出了一种硬渗出物检测算法。它是基于一种学习方法在去除视盘的视网膜图像中的应用。本文提出了一种随机森林算法,该算法具有特定的参数,经过强度阈值处理后,得到一个渗出物的二值掩码。灵敏度为91.40%,准确度为94.38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early Diagnosis of Diabetic Retinopathy using Random Forest Algorithm
The diabetic retinopathy is one of the most frequent causes of visual damage and vision loss. It can cause blindness in the absence of the diagnosis and the treatment. The automatic detection of the hard exudate in color fundus retinal images is an important task to early diagnosis the diabetic retinopathy. In this paper, a hard exudate detection algorithm is proposed. It is based on the application of a learning method to retinal image with removed optic disk. This paper proposes the use of Random Forest algorithm with a specific parameter from which a binary mask of exudate is obtained after intensity thresholding. It achieves 91.40% for sensitivity and 94.38% for the accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1