{"title":"人工神经网络高性能不动点乘法器的自动生成","authors":"Yang Zhao, Zhongxia Shang, Y. Lian","doi":"10.1109/AICAS.2019.8771573","DOIUrl":null,"url":null,"abstract":"Multiplier is a critical building block in artificial neural network (ANN). The precision and connection structure of the multiplier should be optimized for an ANN to achieve the best energy, speed and area efficiency. Changes in ANN application and CMOS process often result in the redesign of the multiplier. This paper presents an auto generation method for high-performance fixed-point multiplier based on three techniques, i.e. Modified Booth Encoding (MBE) scheme, improved three-dimensional reduction method (ITDM) and mixed parallel pipelining (MPP). The MBE is customized for ReLU activation function based ANN to remove the sign bit of the multiplicand to save area. The ITDM further shorts the critical path by changing the position of half adder in the conventional TDM. The proposed MPP divides the structures into different stages for parallel and pipelined implementation. The auto generated multiplier speed is 4.04 times faster and the layout is 29% denser and more regular than the conventional MBE combining with TDM method based multiplier.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Auto Generation of High-Performance Fixed-Point Multiplier for Artificial Neural Networks\",\"authors\":\"Yang Zhao, Zhongxia Shang, Y. Lian\",\"doi\":\"10.1109/AICAS.2019.8771573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiplier is a critical building block in artificial neural network (ANN). The precision and connection structure of the multiplier should be optimized for an ANN to achieve the best energy, speed and area efficiency. Changes in ANN application and CMOS process often result in the redesign of the multiplier. This paper presents an auto generation method for high-performance fixed-point multiplier based on three techniques, i.e. Modified Booth Encoding (MBE) scheme, improved three-dimensional reduction method (ITDM) and mixed parallel pipelining (MPP). The MBE is customized for ReLU activation function based ANN to remove the sign bit of the multiplicand to save area. The ITDM further shorts the critical path by changing the position of half adder in the conventional TDM. The proposed MPP divides the structures into different stages for parallel and pipelined implementation. The auto generated multiplier speed is 4.04 times faster and the layout is 29% denser and more regular than the conventional MBE combining with TDM method based multiplier.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Auto Generation of High-Performance Fixed-Point Multiplier for Artificial Neural Networks
Multiplier is a critical building block in artificial neural network (ANN). The precision and connection structure of the multiplier should be optimized for an ANN to achieve the best energy, speed and area efficiency. Changes in ANN application and CMOS process often result in the redesign of the multiplier. This paper presents an auto generation method for high-performance fixed-point multiplier based on three techniques, i.e. Modified Booth Encoding (MBE) scheme, improved three-dimensional reduction method (ITDM) and mixed parallel pipelining (MPP). The MBE is customized for ReLU activation function based ANN to remove the sign bit of the multiplicand to save area. The ITDM further shorts the critical path by changing the position of half adder in the conventional TDM. The proposed MPP divides the structures into different stages for parallel and pipelined implementation. The auto generated multiplier speed is 4.04 times faster and the layout is 29% denser and more regular than the conventional MBE combining with TDM method based multiplier.