{"title":"一种利用事件传播和时间逻辑进行时间分析的新方法","authors":"Arijit Mondal, P. Chakrabarti, C. Mandal","doi":"10.1109/DATE.2004.1269055","DOIUrl":null,"url":null,"abstract":"Present day designers require deep reasoning methods to analyze circuit timing. This includes analysis of effects of dynamic behavior (like glitches) on critical paths, simultaneous switching and identification of specific patterns and their timings. This paper proposes a novel approach that uses a combination of symbolic event propagation and temporal reasoning to extract timing properties of gate-level circuits. The formulation captures complex situations like triggering of traditional false paths and simultaneous switching in a unified symbolic representation in addition to identifying false paths, critical paths as well as conditions for such situations. This information is then represented as an event-time graph. A simple temporal logic on events is proposed that can be used to formulate a wide class of useful queries for various input scenarios. These include maximum/minimum delays, transition times, duration of patterns, etc. An algorithm is developed that retrieves answers to such queries from the event-time graph. A complete BDD based implementation of this system has been made. Results on the ISCAS85 benchmarks indicate very interesting properties of these circuits.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A new approach to timing analysis using event propagation and temporal logic\",\"authors\":\"Arijit Mondal, P. Chakrabarti, C. Mandal\",\"doi\":\"10.1109/DATE.2004.1269055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present day designers require deep reasoning methods to analyze circuit timing. This includes analysis of effects of dynamic behavior (like glitches) on critical paths, simultaneous switching and identification of specific patterns and their timings. This paper proposes a novel approach that uses a combination of symbolic event propagation and temporal reasoning to extract timing properties of gate-level circuits. The formulation captures complex situations like triggering of traditional false paths and simultaneous switching in a unified symbolic representation in addition to identifying false paths, critical paths as well as conditions for such situations. This information is then represented as an event-time graph. A simple temporal logic on events is proposed that can be used to formulate a wide class of useful queries for various input scenarios. These include maximum/minimum delays, transition times, duration of patterns, etc. An algorithm is developed that retrieves answers to such queries from the event-time graph. A complete BDD based implementation of this system has been made. Results on the ISCAS85 benchmarks indicate very interesting properties of these circuits.\",\"PeriodicalId\":335658,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2004.1269055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1269055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new approach to timing analysis using event propagation and temporal logic
Present day designers require deep reasoning methods to analyze circuit timing. This includes analysis of effects of dynamic behavior (like glitches) on critical paths, simultaneous switching and identification of specific patterns and their timings. This paper proposes a novel approach that uses a combination of symbolic event propagation and temporal reasoning to extract timing properties of gate-level circuits. The formulation captures complex situations like triggering of traditional false paths and simultaneous switching in a unified symbolic representation in addition to identifying false paths, critical paths as well as conditions for such situations. This information is then represented as an event-time graph. A simple temporal logic on events is proposed that can be used to formulate a wide class of useful queries for various input scenarios. These include maximum/minimum delays, transition times, duration of patterns, etc. An algorithm is developed that retrieves answers to such queries from the event-time graph. A complete BDD based implementation of this system has been made. Results on the ISCAS85 benchmarks indicate very interesting properties of these circuits.