未知地震输入下基础隔震结构参数跟踪的自适应扩展卡尔曼滤波

T. Mu, L. Zhou, J. N. Yang
{"title":"未知地震输入下基础隔震结构参数跟踪的自适应扩展卡尔曼滤波","authors":"T. Mu, L. Zhou, J. N. Yang","doi":"10.1109/IBCAST.2013.6512135","DOIUrl":null,"url":null,"abstract":"Base isolation systems have been widely used in civil structures as protective devices against earthquakes, hurricanes, etc., and the state assessment using vibration data for the safety, reliability and integrity of base-isolated structures is very important in structural health monitoring. In the case of field engineering applications, external excitations, such as seismic inputs, wind inputs, etc., usually could not be measured, or even could not be measurable. Herein, an adaptive extended Kalman filter approach for structural parameter tracking under unknown seismic input, which is referred to as AEKF-UI approach, is developed to on-line track the base-isolated structural time-varying parameters, including the damping, stiffness, nonlinear hysteretic parameters, etc., and identify the unmeasured seismic input. The experimental results of vibration tests demonstrate the fact that the AEKF-UI method developed is able to achieve real-time parameter tracking of base-isolated structure under unknown seismic input, leading to the on-line identification of structural damages.","PeriodicalId":276834,"journal":{"name":"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive extended Kalman filter for parameter tracking of base-isolated structure under unknown seismic input\",\"authors\":\"T. Mu, L. Zhou, J. N. Yang\",\"doi\":\"10.1109/IBCAST.2013.6512135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Base isolation systems have been widely used in civil structures as protective devices against earthquakes, hurricanes, etc., and the state assessment using vibration data for the safety, reliability and integrity of base-isolated structures is very important in structural health monitoring. In the case of field engineering applications, external excitations, such as seismic inputs, wind inputs, etc., usually could not be measured, or even could not be measurable. Herein, an adaptive extended Kalman filter approach for structural parameter tracking under unknown seismic input, which is referred to as AEKF-UI approach, is developed to on-line track the base-isolated structural time-varying parameters, including the damping, stiffness, nonlinear hysteretic parameters, etc., and identify the unmeasured seismic input. The experimental results of vibration tests demonstrate the fact that the AEKF-UI method developed is able to achieve real-time parameter tracking of base-isolated structure under unknown seismic input, leading to the on-line identification of structural damages.\",\"PeriodicalId\":276834,\"journal\":{\"name\":\"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBCAST.2013.6512135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBCAST.2013.6512135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基础隔震系统作为地震、飓风等的防护装置广泛应用于民用结构中,利用振动数据对基础隔震结构的安全性、可靠性和完整性进行状态评估是结构健康监测的重要内容。在现场工程应用中,外界激励,如地震输入、风输入等,通常是无法测量的,甚至是无法测量的。本文提出了一种用于未知地震输入下结构参数跟踪的自适应扩展卡尔曼滤波方法,即AEKF-UI方法,用于在线跟踪基础隔震结构的时变参数,包括阻尼、刚度、非线性滞回参数等,并识别未测地震输入。振动试验结果表明,所开发的AEKF-UI方法能够实现未知地震输入下基础隔震结构的实时参数跟踪,从而实现结构损伤的在线识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive extended Kalman filter for parameter tracking of base-isolated structure under unknown seismic input
Base isolation systems have been widely used in civil structures as protective devices against earthquakes, hurricanes, etc., and the state assessment using vibration data for the safety, reliability and integrity of base-isolated structures is very important in structural health monitoring. In the case of field engineering applications, external excitations, such as seismic inputs, wind inputs, etc., usually could not be measured, or even could not be measurable. Herein, an adaptive extended Kalman filter approach for structural parameter tracking under unknown seismic input, which is referred to as AEKF-UI approach, is developed to on-line track the base-isolated structural time-varying parameters, including the damping, stiffness, nonlinear hysteretic parameters, etc., and identify the unmeasured seismic input. The experimental results of vibration tests demonstrate the fact that the AEKF-UI method developed is able to achieve real-time parameter tracking of base-isolated structure under unknown seismic input, leading to the on-line identification of structural damages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear independent increment process with linear standard deviation function for degradation analysis Sensor fault reconstruction for one-sided Lipschitz nonlinear systems Colloidal preparation of copper selenide and indium selenide nanoparticles by single source precursors approach Novel iris segmentation and recognition system for human identification A narrowband low noise amplifier for passive imaging systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1