personity2vec:使社会网络中的行为障碍分析成为可能

A. Beheshti, V. Hashemi, S. Yakhchi, H. M. Nezhad, S. Ghafari, Jian Yang
{"title":"personity2vec:使社会网络中的行为障碍分析成为可能","authors":"A. Beheshti, V. Hashemi, S. Yakhchi, H. M. Nezhad, S. Ghafari, Jian Yang","doi":"10.1145/3336191.3371865","DOIUrl":null,"url":null,"abstract":"Enabling the analysis of behavioral disorders over time in social networks, can help in suicide prevention, (school) bullying detection and extremist/criminal activity prediction. In this paper, we present a novel data analytics pipeline to enable the analysis of patterns of behavioral disorders on social networks. We present a Social Behavior Graph (sbGraph) model, to enable the analysis of factors that are driving behavior disorders over time. We use the golden standards in personality, behavior and attitude to build a domain specific Knowledge Base (KB). We use this domain knowledge to design cognitive services to automatically contextualize the raw social data and to prepare them for behavioral analytics. Then we introduce a pattern-based word embedding technique, namely personality2vec, on each feature extracted to build the sbGraph. The goal is to use mathematical embedding from a space with a dimension per feature to a continuous vector space which can be mapped to classes of behavioral disorders (such as cyber-bullying and radicalization) in the domain specific KB. We implement an interactive dashboard to enable social network analysts to analyze and understand the patterns of behavioral disorders over time. We focus on a motivating scenario in Australian government's office of the e-Safety commissioner, where the goal is to empowering all citizens to have safer, more positive experiences online.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"personality2vec: Enabling the Analysis of Behavioral Disorders in Social Networks\",\"authors\":\"A. Beheshti, V. Hashemi, S. Yakhchi, H. M. Nezhad, S. Ghafari, Jian Yang\",\"doi\":\"10.1145/3336191.3371865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enabling the analysis of behavioral disorders over time in social networks, can help in suicide prevention, (school) bullying detection and extremist/criminal activity prediction. In this paper, we present a novel data analytics pipeline to enable the analysis of patterns of behavioral disorders on social networks. We present a Social Behavior Graph (sbGraph) model, to enable the analysis of factors that are driving behavior disorders over time. We use the golden standards in personality, behavior and attitude to build a domain specific Knowledge Base (KB). We use this domain knowledge to design cognitive services to automatically contextualize the raw social data and to prepare them for behavioral analytics. Then we introduce a pattern-based word embedding technique, namely personality2vec, on each feature extracted to build the sbGraph. The goal is to use mathematical embedding from a space with a dimension per feature to a continuous vector space which can be mapped to classes of behavioral disorders (such as cyber-bullying and radicalization) in the domain specific KB. We implement an interactive dashboard to enable social network analysts to analyze and understand the patterns of behavioral disorders over time. We focus on a motivating scenario in Australian government's office of the e-Safety commissioner, where the goal is to empowering all citizens to have safer, more positive experiences online.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

随着时间的推移,分析社交网络中的行为障碍可以帮助预防自杀,(学校)欺凌检测和极端主义/犯罪活动预测。在本文中,我们提出了一种新的数据分析管道,可以分析社交网络上的行为障碍模式。我们提出了一个社会行为图(sbGraph)模型,以便分析导致行为障碍的因素。我们使用人格、行为和态度的黄金标准来构建特定领域的知识库(KB)。我们使用这些领域知识来设计认知服务,以自动地将原始社会数据上下文化,并为行为分析做好准备。然后在每个提取的特征上引入基于模式的词嵌入技术personity2vec来构建sbGraph。目标是使用数学嵌入,从每个特征有一个维度的空间到一个连续的向量空间,这个空间可以映射到特定领域知识库中的行为障碍类别(如网络欺凌和激进化)。我们实现了一个交互式仪表板,使社交网络分析师能够分析和理解行为障碍的模式。我们关注的是澳大利亚政府电子安全专员办公室的一个激励方案,其目标是让所有公民都能拥有更安全、更积极的在线体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
personality2vec: Enabling the Analysis of Behavioral Disorders in Social Networks
Enabling the analysis of behavioral disorders over time in social networks, can help in suicide prevention, (school) bullying detection and extremist/criminal activity prediction. In this paper, we present a novel data analytics pipeline to enable the analysis of patterns of behavioral disorders on social networks. We present a Social Behavior Graph (sbGraph) model, to enable the analysis of factors that are driving behavior disorders over time. We use the golden standards in personality, behavior and attitude to build a domain specific Knowledge Base (KB). We use this domain knowledge to design cognitive services to automatically contextualize the raw social data and to prepare them for behavioral analytics. Then we introduce a pattern-based word embedding technique, namely personality2vec, on each feature extracted to build the sbGraph. The goal is to use mathematical embedding from a space with a dimension per feature to a continuous vector space which can be mapped to classes of behavioral disorders (such as cyber-bullying and radicalization) in the domain specific KB. We implement an interactive dashboard to enable social network analysts to analyze and understand the patterns of behavioral disorders over time. We focus on a motivating scenario in Australian government's office of the e-Safety commissioner, where the goal is to empowering all citizens to have safer, more positive experiences online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1