FPGA加速云中的INDEL对齐

Lisa Wu, David Bruns-Smith, Frank A. Nothaft, Qijing Huang, S. Karandikar, Johnny Le, Andrew Lin, Howard Mao, B. Sweeney, K. Asanović, D. Patterson, A. Joseph
{"title":"FPGA加速云中的INDEL对齐","authors":"Lisa Wu, David Bruns-Smith, Frank A. Nothaft, Qijing Huang, S. Karandikar, Johnny Le, Andrew Lin, Howard Mao, B. Sweeney, K. Asanović, D. Patterson, A. Joseph","doi":"10.1109/HPCA.2019.00044","DOIUrl":null,"url":null,"abstract":"The amount of data being generated in genomics is predicted to be between 2 and 40 exabytes per year for the next decade, making genomic analysis the new frontier and the new challenge for precision medicine. This paper explores targeted deployment of hardware accelerators in the cloud to improve the runtime and throughput of immensescale genomic data analyses. In particular, INDEL (INsertion/DELetion) realignment is a critical operation that enables diagnostic testings of cancer through error correction prior to variant calling. It is the slowest part of the somatic (cancer) genomic analysis pipeline, the alignment refinement pipeline, and represents roughly one-third of the execution time of timesensitive diagnostics for acute cancer patients. To accelerate genomic analysis, this paper describes a hardware accelerator for INDEL realignment (IR), and a hardware-software framework leveraging FPGAs-as-a-service in the cloud. We chose to implement genomics analytics on FPGAs because genomic algorithms are still rapidly evolving (e.g. the de facto standard “GATK Best Practices” has had five releases since January of this year). We chose to deploy genomics accelerators in the cloud to reduce capital expenditure and to provide a more quantitative performance and cost analysis. We built and deployed a sea of IR accelerators using our hardware-software accelerator development framework on AWS EC2 F1 instances. We show that our IR accelerator system performed 81× better than multi-threaded genomic analysis software while being 32× more cost efficient. Keywords-Computer Architecture, Microarchitecture, Accelerator Architecture, Hardware Specialization, Genomic Analytics, INDEL Realignment, FPGA Acceleration, FPGAs-as-aservice, Cloud FPGAs","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"FPGA Accelerated INDEL Realignment in the Cloud\",\"authors\":\"Lisa Wu, David Bruns-Smith, Frank A. Nothaft, Qijing Huang, S. Karandikar, Johnny Le, Andrew Lin, Howard Mao, B. Sweeney, K. Asanović, D. Patterson, A. Joseph\",\"doi\":\"10.1109/HPCA.2019.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of data being generated in genomics is predicted to be between 2 and 40 exabytes per year for the next decade, making genomic analysis the new frontier and the new challenge for precision medicine. This paper explores targeted deployment of hardware accelerators in the cloud to improve the runtime and throughput of immensescale genomic data analyses. In particular, INDEL (INsertion/DELetion) realignment is a critical operation that enables diagnostic testings of cancer through error correction prior to variant calling. It is the slowest part of the somatic (cancer) genomic analysis pipeline, the alignment refinement pipeline, and represents roughly one-third of the execution time of timesensitive diagnostics for acute cancer patients. To accelerate genomic analysis, this paper describes a hardware accelerator for INDEL realignment (IR), and a hardware-software framework leveraging FPGAs-as-a-service in the cloud. We chose to implement genomics analytics on FPGAs because genomic algorithms are still rapidly evolving (e.g. the de facto standard “GATK Best Practices” has had five releases since January of this year). We chose to deploy genomics accelerators in the cloud to reduce capital expenditure and to provide a more quantitative performance and cost analysis. We built and deployed a sea of IR accelerators using our hardware-software accelerator development framework on AWS EC2 F1 instances. We show that our IR accelerator system performed 81× better than multi-threaded genomic analysis software while being 32× more cost efficient. Keywords-Computer Architecture, Microarchitecture, Accelerator Architecture, Hardware Specialization, Genomic Analytics, INDEL Realignment, FPGA Acceleration, FPGAs-as-aservice, Cloud FPGAs\",\"PeriodicalId\":102050,\"journal\":{\"name\":\"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2019.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

据预测,在未来十年,基因组学每年产生的数据量将在2到40艾字节之间,这使得基因组分析成为精准医疗的新前沿和新挑战。本文探讨了在云中有针对性地部署硬件加速器,以改善大规模基因组数据分析的运行时间和吞吐量。特别是,INDEL(插入/删除)重组是一项关键操作,可以在变体调用之前通过错误纠正来进行癌症诊断测试。它是体细胞(癌症)基因组分析管道(校准优化管道)中最慢的部分,大约占急性癌症患者时间敏感诊断执行时间的三分之一。为了加速基因组分析,本文描述了一个用于INDEL重组(IR)的硬件加速器,以及一个利用云端fpga即服务的硬件软件框架。我们选择在fpga上实现基因组分析,因为基因组算法仍在快速发展(例如,事实上的标准“GATK最佳实践”自今年1月以来已经发布了五个版本)。我们选择在云中部署基因组加速器,以减少资本支出,并提供更定量的性能和成本分析。我们在AWS EC2 F1实例上使用我们的硬件软件加速器开发框架构建并部署了大量IR加速器。我们的IR加速系统比多线程基因组分析软件性能好81倍,成本效率高32倍。关键词:计算机体系结构,微体系结构,加速器体系结构,硬件专业化,基因组分析,INDEL重新排列,FPGA加速,FPGA即服务,云FPGA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA Accelerated INDEL Realignment in the Cloud
The amount of data being generated in genomics is predicted to be between 2 and 40 exabytes per year for the next decade, making genomic analysis the new frontier and the new challenge for precision medicine. This paper explores targeted deployment of hardware accelerators in the cloud to improve the runtime and throughput of immensescale genomic data analyses. In particular, INDEL (INsertion/DELetion) realignment is a critical operation that enables diagnostic testings of cancer through error correction prior to variant calling. It is the slowest part of the somatic (cancer) genomic analysis pipeline, the alignment refinement pipeline, and represents roughly one-third of the execution time of timesensitive diagnostics for acute cancer patients. To accelerate genomic analysis, this paper describes a hardware accelerator for INDEL realignment (IR), and a hardware-software framework leveraging FPGAs-as-a-service in the cloud. We chose to implement genomics analytics on FPGAs because genomic algorithms are still rapidly evolving (e.g. the de facto standard “GATK Best Practices” has had five releases since January of this year). We chose to deploy genomics accelerators in the cloud to reduce capital expenditure and to provide a more quantitative performance and cost analysis. We built and deployed a sea of IR accelerators using our hardware-software accelerator development framework on AWS EC2 F1 instances. We show that our IR accelerator system performed 81× better than multi-threaded genomic analysis software while being 32× more cost efficient. Keywords-Computer Architecture, Microarchitecture, Accelerator Architecture, Hardware Specialization, Genomic Analytics, INDEL Realignment, FPGA Acceleration, FPGAs-as-aservice, Cloud FPGAs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1