{"title":"基于反向传播神经网络的无损图像压缩预测","authors":"G. Hong, G. Hall, T. Terrell","doi":"10.1109/ICSIGP.1996.566266","DOIUrl":null,"url":null,"abstract":"This paper describes a prediction process produced by a back-propagation neural network for lossless image compression. The predictor is designed by supervised training of a back-propagation neural network using actual image pixels, i.e. using a typical sequence of pixel values. The significance of this approach lies in the fact that it can exploit high-order statistics and the nonlinear function existing between pixel values in an image. Results are presented for the prediction error image in terms of mean-square error and first-order entropy, and a discussion on the performance of the algorithm is given.","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction by back-propagation neural network for lossless image compression\",\"authors\":\"G. Hong, G. Hall, T. Terrell\",\"doi\":\"10.1109/ICSIGP.1996.566266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a prediction process produced by a back-propagation neural network for lossless image compression. The predictor is designed by supervised training of a back-propagation neural network using actual image pixels, i.e. using a typical sequence of pixel values. The significance of this approach lies in the fact that it can exploit high-order statistics and the nonlinear function existing between pixel values in an image. Results are presented for the prediction error image in terms of mean-square error and first-order entropy, and a discussion on the performance of the algorithm is given.\",\"PeriodicalId\":385432,\"journal\":{\"name\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGP.1996.566266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.566266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction by back-propagation neural network for lossless image compression
This paper describes a prediction process produced by a back-propagation neural network for lossless image compression. The predictor is designed by supervised training of a back-propagation neural network using actual image pixels, i.e. using a typical sequence of pixel values. The significance of this approach lies in the fact that it can exploit high-order statistics and the nonlinear function existing between pixel values in an image. Results are presented for the prediction error image in terms of mean-square error and first-order entropy, and a discussion on the performance of the algorithm is given.