Si1−xGex合金取向相关的复带结构

A. Ajoy, K. Murali, S. Karmalkar, S. Laux
{"title":"Si1−xGex合金取向相关的复带结构","authors":"A. Ajoy, K. Murali, S. Karmalkar, S. Laux","doi":"10.1109/DRC.2011.5994441","DOIUrl":null,"url":null,"abstract":"Over the last decade, Si<inf>1−x</inf>Ge<inf>x</inf> has increasingly been used as a channel material in MOSFETs. Though many studies have dealt with the real bandstructure of Si<inf>1−x</inf>Ge<inf>x</inf>, the effect of germanium mole fraction x on complex bandstructure has been unexplored. Complex bands fundamentally determine band to band tunneling (BTBT) current. For example, using the orientation dependent complex bandstructure of silicon [1], it has been shown [2] that the BTBT current in the [110] direction is an order of magnitude larger than that along the [100] direction. BTBT contributes significantly to off-current I<inf>off</inf> in conventional MOSFETs, via the mechanism of gate induced drain leakage (GIDL). Additionally, BTBT determines the on current I<inf>on</inf> in tunneling FETs, which have been suggested as next generation devices. Further, BTBT is more dominant in Si<inf>1−x</inf>Ge<inf>x</inf> than silicon, owing to a narrower bandgap. In this work, we determine the orientation dependent complex bandstructure of Si<inf>1−x</inf>Ge<inf>x</inf> along common crystallographic directions and predict trends in BTBT current.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Orientation dependent complex bandstructure of Si1−xGex alloys\",\"authors\":\"A. Ajoy, K. Murali, S. Karmalkar, S. Laux\",\"doi\":\"10.1109/DRC.2011.5994441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decade, Si<inf>1−x</inf>Ge<inf>x</inf> has increasingly been used as a channel material in MOSFETs. Though many studies have dealt with the real bandstructure of Si<inf>1−x</inf>Ge<inf>x</inf>, the effect of germanium mole fraction x on complex bandstructure has been unexplored. Complex bands fundamentally determine band to band tunneling (BTBT) current. For example, using the orientation dependent complex bandstructure of silicon [1], it has been shown [2] that the BTBT current in the [110] direction is an order of magnitude larger than that along the [100] direction. BTBT contributes significantly to off-current I<inf>off</inf> in conventional MOSFETs, via the mechanism of gate induced drain leakage (GIDL). Additionally, BTBT determines the on current I<inf>on</inf> in tunneling FETs, which have been suggested as next generation devices. Further, BTBT is more dominant in Si<inf>1−x</inf>Ge<inf>x</inf> than silicon, owing to a narrower bandgap. In this work, we determine the orientation dependent complex bandstructure of Si<inf>1−x</inf>Ge<inf>x</inf> along common crystallographic directions and predict trends in BTBT current.\",\"PeriodicalId\":107059,\"journal\":{\"name\":\"69th Device Research Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"69th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2011.5994441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的十年中,Si1−xGex越来越多地被用作mosfet中的沟道材料。虽然许多研究都涉及到Si1−xGex的真实带结构,但锗摩尔分数x对复杂带结构的影响尚未被探索。复杂带从根本上决定了带间隧道电流。例如,利用硅的取向依赖的复带结构[1],研究表明[2],在[110]方向上的BTBT电流比在[100]方向上的电流大一个数量级。在传统的mosfet中,BTBT通过栅极诱发漏极漏漏(GIDL)的机制对关断电流的影响很大。此外,bt决定了隧道效应管的on电流,已被建议作为下一代器件。此外,由于带隙更窄,BTBT在Si1−xGex中比硅中更占优势。在这项工作中,我们确定了Si1−xGex沿共同晶体学方向的取向依赖的复杂带结构,并预测了BTBT电流的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Orientation dependent complex bandstructure of Si1−xGex alloys
Over the last decade, Si1−xGex has increasingly been used as a channel material in MOSFETs. Though many studies have dealt with the real bandstructure of Si1−xGex, the effect of germanium mole fraction x on complex bandstructure has been unexplored. Complex bands fundamentally determine band to band tunneling (BTBT) current. For example, using the orientation dependent complex bandstructure of silicon [1], it has been shown [2] that the BTBT current in the [110] direction is an order of magnitude larger than that along the [100] direction. BTBT contributes significantly to off-current Ioff in conventional MOSFETs, via the mechanism of gate induced drain leakage (GIDL). Additionally, BTBT determines the on current Ion in tunneling FETs, which have been suggested as next generation devices. Further, BTBT is more dominant in Si1−xGex than silicon, owing to a narrower bandgap. In this work, we determine the orientation dependent complex bandstructure of Si1−xGex along common crystallographic directions and predict trends in BTBT current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee Rump sessions Circuit applications based on solution-processed zinc-tin oxide TFTs 1.0 THz fmax InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance Effect of disorder on superfluidity in double layer graphene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1