{"title":"基于计算思维的繁荣与毁灭双重同化改进帝国主义竞争算法","authors":"Bin Li, Zhi–Bin Tang","doi":"10.1109/CEC55065.2022.9870296","DOIUrl":null,"url":null,"abstract":"Whereas the imperialist competitive algorithm (ICA) shows limited global search ability and be liable to be trapped into local optimum, a double-assimilation of prosperity and destruction oriented improved imperialist competitive algorithm (DPDO-IIC A) is proposed tentatively to overcome inherent defects. The imperialist assimilation and colonial reform strategy are customized purposefully, and a novel population redistribution mechanism is introduced as well. The three improvement measures are supposed to further promote population diversity and searching accuracy. The CEC2017 test set is selected to verify the performance of the DPDO-IICA by the different types of numerical function problems with the different dimensions. Moreover, the DPDO-IICA is compared with the three first-class intelligent optimization algorithms, which have achieved significant rankings in the CEC2017 competition. The comparison shows that the DPDO-IICA has good performances, which is demonstrated by the accuracy and stability. In addition, the proportion of imperialists and colonies is investigated, and it is through the community partitioning and clustering dynamically to enhance the population diversity. In conclusion, the DPDO-IICA can effectively improve the ability of global exploration and avoid premature convergence in comparison with the original ICA.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-Assimilation of Prosperity and Destruction Oriented Improved Imperialist Competitive Algorithm with Computational Thinking\",\"authors\":\"Bin Li, Zhi–Bin Tang\",\"doi\":\"10.1109/CEC55065.2022.9870296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whereas the imperialist competitive algorithm (ICA) shows limited global search ability and be liable to be trapped into local optimum, a double-assimilation of prosperity and destruction oriented improved imperialist competitive algorithm (DPDO-IIC A) is proposed tentatively to overcome inherent defects. The imperialist assimilation and colonial reform strategy are customized purposefully, and a novel population redistribution mechanism is introduced as well. The three improvement measures are supposed to further promote population diversity and searching accuracy. The CEC2017 test set is selected to verify the performance of the DPDO-IICA by the different types of numerical function problems with the different dimensions. Moreover, the DPDO-IICA is compared with the three first-class intelligent optimization algorithms, which have achieved significant rankings in the CEC2017 competition. The comparison shows that the DPDO-IICA has good performances, which is demonstrated by the accuracy and stability. In addition, the proportion of imperialists and colonies is investigated, and it is through the community partitioning and clustering dynamically to enhance the population diversity. In conclusion, the DPDO-IICA can effectively improve the ability of global exploration and avoid premature convergence in comparison with the original ICA.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Double-Assimilation of Prosperity and Destruction Oriented Improved Imperialist Competitive Algorithm with Computational Thinking
Whereas the imperialist competitive algorithm (ICA) shows limited global search ability and be liable to be trapped into local optimum, a double-assimilation of prosperity and destruction oriented improved imperialist competitive algorithm (DPDO-IIC A) is proposed tentatively to overcome inherent defects. The imperialist assimilation and colonial reform strategy are customized purposefully, and a novel population redistribution mechanism is introduced as well. The three improvement measures are supposed to further promote population diversity and searching accuracy. The CEC2017 test set is selected to verify the performance of the DPDO-IICA by the different types of numerical function problems with the different dimensions. Moreover, the DPDO-IICA is compared with the three first-class intelligent optimization algorithms, which have achieved significant rankings in the CEC2017 competition. The comparison shows that the DPDO-IICA has good performances, which is demonstrated by the accuracy and stability. In addition, the proportion of imperialists and colonies is investigated, and it is through the community partitioning and clustering dynamically to enhance the population diversity. In conclusion, the DPDO-IICA can effectively improve the ability of global exploration and avoid premature convergence in comparison with the original ICA.