使用从外观流形中分层提取样本的图像集进行人脸识别

Wei-liang Fan, D. Yeung
{"title":"使用从外观流形中分层提取样本的图像集进行人脸识别","authors":"Wei-liang Fan, D. Yeung","doi":"10.1109/FGR.2006.47","DOIUrl":null,"url":null,"abstract":"An unsupervised nonparametric approach is proposed to automatically extract representative face samples (exemplars) from a video sequence or an image set for multiple-shot face recognition. Motivated by a nonlinear dimensionality reduction algorithm called Isomap, we use local neighborhood information to approximate the geodesic distances between face images. A hierarchical agglomerative clustering (HAC) algorithm is then applied to group similar faces together based on the estimated geodesic distances which approximate their locations on the appearance manifold. We define the exemplars as cluster centers for template matching at the subsequent testing stage. The final recognition is the outcome of a majority voting scheme which combines the decisions from all the individual frames in the test set. Experimental results on a 40-subject video database demonstrate the effectiveness and flexibility of our proposed method","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Face recognition with image sets using hierarchically extracted exemplars from appearance manifolds\",\"authors\":\"Wei-liang Fan, D. Yeung\",\"doi\":\"10.1109/FGR.2006.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An unsupervised nonparametric approach is proposed to automatically extract representative face samples (exemplars) from a video sequence or an image set for multiple-shot face recognition. Motivated by a nonlinear dimensionality reduction algorithm called Isomap, we use local neighborhood information to approximate the geodesic distances between face images. A hierarchical agglomerative clustering (HAC) algorithm is then applied to group similar faces together based on the estimated geodesic distances which approximate their locations on the appearance manifold. We define the exemplars as cluster centers for template matching at the subsequent testing stage. The final recognition is the outcome of a majority voting scheme which combines the decisions from all the individual frames in the test set. Experimental results on a 40-subject video database demonstrate the effectiveness and flexibility of our proposed method\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

提出了一种从视频序列或图像集中自动提取代表性人脸样本的无监督非参数方法,用于多镜头人脸识别。在一种名为Isomap的非线性降维算法的激励下,我们使用局部邻域信息来近似人脸图像之间的测地线距离。然后采用层次聚类(HAC)算法,根据估计的测地线距离将相似的人脸在外观流形上的位置进行分组。我们将示例定义为集群中心,以便在随后的测试阶段进行模板匹配。最终的识别是多数投票方案的结果,该方案结合了测试集中所有单个帧的决策。在40个主题视频数据库上的实验结果证明了该方法的有效性和灵活性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face recognition with image sets using hierarchically extracted exemplars from appearance manifolds
An unsupervised nonparametric approach is proposed to automatically extract representative face samples (exemplars) from a video sequence or an image set for multiple-shot face recognition. Motivated by a nonlinear dimensionality reduction algorithm called Isomap, we use local neighborhood information to approximate the geodesic distances between face images. A hierarchical agglomerative clustering (HAC) algorithm is then applied to group similar faces together based on the estimated geodesic distances which approximate their locations on the appearance manifold. We define the exemplars as cluster centers for template matching at the subsequent testing stage. The final recognition is the outcome of a majority voting scheme which combines the decisions from all the individual frames in the test set. Experimental results on a 40-subject video database demonstrate the effectiveness and flexibility of our proposed method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1