基于部分重构应用的高效FPGA布局设计

N. Deak, O. Creţ, H. Hedesiu
{"title":"基于部分重构应用的高效FPGA布局设计","authors":"N. Deak, O. Creţ, H. Hedesiu","doi":"10.1109/FCCM.2019.00050","DOIUrl":null,"url":null,"abstract":"This paper introduces an efficient automatic floorplanning algorithm, which takes into account the heterogeneous architectures of modern FPGA families, as well as partial reconfiguration (PR) constraints, introducing the aspect ratio (AR) constraint to optimize routing. The algorithm generates possible placements of the partial modules, and then applies a recursive pseudo-bipartitioning heuristic search to find the best floorplan. The experiments show that its performance is significantly better than the one of other algorithms in this field.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient FPGA Floorplanning for Partial Reconfiguration-Based Applications\",\"authors\":\"N. Deak, O. Creţ, H. Hedesiu\",\"doi\":\"10.1109/FCCM.2019.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an efficient automatic floorplanning algorithm, which takes into account the heterogeneous architectures of modern FPGA families, as well as partial reconfiguration (PR) constraints, introducing the aspect ratio (AR) constraint to optimize routing. The algorithm generates possible placements of the partial modules, and then applies a recursive pseudo-bipartitioning heuristic search to find the best floorplan. The experiments show that its performance is significantly better than the one of other algorithms in this field.\",\"PeriodicalId\":116955,\"journal\":{\"name\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2019.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种高效的自动布局算法,该算法考虑了现代FPGA系列的异构架构,以及部分重构(PR)约束,引入了宽高比(AR)约束来优化路由。该算法生成部分模块的可能位置,然后应用递归伪双分区启发式搜索来找到最佳平面图。实验表明,该算法的性能明显优于该领域的其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient FPGA Floorplanning for Partial Reconfiguration-Based Applications
This paper introduces an efficient automatic floorplanning algorithm, which takes into account the heterogeneous architectures of modern FPGA families, as well as partial reconfiguration (PR) constraints, introducing the aspect ratio (AR) constraint to optimize routing. The algorithm generates possible placements of the partial modules, and then applies a recursive pseudo-bipartitioning heuristic search to find the best floorplan. The experiments show that its performance is significantly better than the one of other algorithms in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration of Long Read Pairwise Overlapping in Genome Sequencing: A Race Between FPGA and GPU MEG: A RISCV-Based System Simulation Infrastructure for Exploring Memory Optimization Using FPGAs and Hybrid Memory Cube π-BA: Bundle Adjustment Acceleration on Embedded FPGAs with Co-observation Optimization Safe Task Interruption for FPGAs Analyzing the Energy-Efficiency of Vision Kernels on Embedded CPU, GPU and FPGA Platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1