MiniTracker:一个轻量级的基于cnn的嵌入式设备视觉目标跟踪系统

Bingyi Zhang, Xin Li, Jun Han, Xiaoyang Zeng
{"title":"MiniTracker:一个轻量级的基于cnn的嵌入式设备视觉目标跟踪系统","authors":"Bingyi Zhang, Xin Li, Jun Han, Xiaoyang Zeng","doi":"10.1109/ICDSP.2018.8631813","DOIUrl":null,"url":null,"abstract":"Visual object tracking (VOT) is a computer vision application and has a wide range of use. However, related state of the art algorithms using deep learning methods, are computationally intensive and storage explosive. Whats more, despite many deep learning accelerators have been proposed, many of them are general structure. So, in this paper, we propose a lightweight CNN-based system–-MiniTracker, integration of algorithm and hardware–-particularly efficient for VOT. Because of the fully-convolutional Siamese network we used, the parameters of network do not need online training, which reduces computation consumptions dramatically. We adapt the original Siamese network (SN) into effective hardware implementation by parameter pruning and quantization. Then a lightweight CNN with the 8-bit parameters is produced, which is only 1.939MB. The real tracking rate is 18.6 frames per second at the cost of 1.284W on ZedBoard. Moreover, Compared with other hardware implementations, our system is robust to challenging scenarios, such as occlusions, changing appearance, illumination variations and etc.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"MiniTracker: A Lightweight CNN-based System for Visual Object Tracking on Embedded Device\",\"authors\":\"Bingyi Zhang, Xin Li, Jun Han, Xiaoyang Zeng\",\"doi\":\"10.1109/ICDSP.2018.8631813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual object tracking (VOT) is a computer vision application and has a wide range of use. However, related state of the art algorithms using deep learning methods, are computationally intensive and storage explosive. Whats more, despite many deep learning accelerators have been proposed, many of them are general structure. So, in this paper, we propose a lightweight CNN-based system–-MiniTracker, integration of algorithm and hardware–-particularly efficient for VOT. Because of the fully-convolutional Siamese network we used, the parameters of network do not need online training, which reduces computation consumptions dramatically. We adapt the original Siamese network (SN) into effective hardware implementation by parameter pruning and quantization. Then a lightweight CNN with the 8-bit parameters is produced, which is only 1.939MB. The real tracking rate is 18.6 frames per second at the cost of 1.284W on ZedBoard. Moreover, Compared with other hardware implementations, our system is robust to challenging scenarios, such as occlusions, changing appearance, illumination variations and etc.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

视觉目标跟踪(VOT)是一种计算机视觉应用,有着广泛的用途。然而,使用深度学习方法的相关最新算法是计算密集型和存储爆炸性的。因此,在本文中,我们提出了一种轻量级的基于cnn的系统——MiniTracker,它集成了算法和硬件,特别适用于VOT。由于我们使用的是全卷积Siamese网络,网络的参数不需要在线训练,大大降低了计算量。通过参数修剪和量化,将原有的Siamese网络(SN)改造为有效的硬件实现。然后得到一个8位参数的轻量级CNN,只有1.939MB。在ZedBoard上,真实的跟踪速率为每秒18.6帧,成本为1.284W。此外,与其他硬件实现相比,我们的系统对具有挑战性的场景具有鲁棒性,例如遮挡,外观变化,光照变化等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MiniTracker: A Lightweight CNN-based System for Visual Object Tracking on Embedded Device
Visual object tracking (VOT) is a computer vision application and has a wide range of use. However, related state of the art algorithms using deep learning methods, are computationally intensive and storage explosive. Whats more, despite many deep learning accelerators have been proposed, many of them are general structure. So, in this paper, we propose a lightweight CNN-based system–-MiniTracker, integration of algorithm and hardware–-particularly efficient for VOT. Because of the fully-convolutional Siamese network we used, the parameters of network do not need online training, which reduces computation consumptions dramatically. We adapt the original Siamese network (SN) into effective hardware implementation by parameter pruning and quantization. Then a lightweight CNN with the 8-bit parameters is produced, which is only 1.939MB. The real tracking rate is 18.6 frames per second at the cost of 1.284W on ZedBoard. Moreover, Compared with other hardware implementations, our system is robust to challenging scenarios, such as occlusions, changing appearance, illumination variations and etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1