{"title":"定义PCB设计路由规则的机器学习技术","authors":"A. Plot, Benoît Goral, P. Besnier","doi":"10.1109/SPI57109.2023.10145545","DOIUrl":null,"url":null,"abstract":"This article presents a methodology using machine learning techniques for defining printed circuit board (PCB) design rules in order to reduce signal integrity (SI) or electro-magnetic interference (EMI) issues. The scenario illustrating the situation for which these rules must be defined is modelled with a 3D EM solver available on the market and simulations are run with varying parameters in order to obtain a representative sample of the design space. This data set is then used to train a surrogate model (i.e. a metamodel) of the scenario based on kriging algorithm. Using this surrogate model, more than ten thousands of simulations are computed in a decent time. The surrogate model estimations allow to estimate the sensitivity of the varying parameters with respect to some specifications (crosstalk level and insertion loss). Finally, an analysis of output values for which some requirements (crosstalk level, insertion) loss are not fulfilled provide some insights about possible adjustment of guidelines in terms of parameter ranges. Finally, a practical design example is given to illustrate the methodology.","PeriodicalId":281134,"journal":{"name":"2023 IEEE 27th Workshop on Signal and Power Integrity (SPI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Techniques for Defining Routing Rules for PCB Design\",\"authors\":\"A. Plot, Benoît Goral, P. Besnier\",\"doi\":\"10.1109/SPI57109.2023.10145545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a methodology using machine learning techniques for defining printed circuit board (PCB) design rules in order to reduce signal integrity (SI) or electro-magnetic interference (EMI) issues. The scenario illustrating the situation for which these rules must be defined is modelled with a 3D EM solver available on the market and simulations are run with varying parameters in order to obtain a representative sample of the design space. This data set is then used to train a surrogate model (i.e. a metamodel) of the scenario based on kriging algorithm. Using this surrogate model, more than ten thousands of simulations are computed in a decent time. The surrogate model estimations allow to estimate the sensitivity of the varying parameters with respect to some specifications (crosstalk level and insertion loss). Finally, an analysis of output values for which some requirements (crosstalk level, insertion) loss are not fulfilled provide some insights about possible adjustment of guidelines in terms of parameter ranges. Finally, a practical design example is given to illustrate the methodology.\",\"PeriodicalId\":281134,\"journal\":{\"name\":\"2023 IEEE 27th Workshop on Signal and Power Integrity (SPI)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 27th Workshop on Signal and Power Integrity (SPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPI57109.2023.10145545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 27th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI57109.2023.10145545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Techniques for Defining Routing Rules for PCB Design
This article presents a methodology using machine learning techniques for defining printed circuit board (PCB) design rules in order to reduce signal integrity (SI) or electro-magnetic interference (EMI) issues. The scenario illustrating the situation for which these rules must be defined is modelled with a 3D EM solver available on the market and simulations are run with varying parameters in order to obtain a representative sample of the design space. This data set is then used to train a surrogate model (i.e. a metamodel) of the scenario based on kriging algorithm. Using this surrogate model, more than ten thousands of simulations are computed in a decent time. The surrogate model estimations allow to estimate the sensitivity of the varying parameters with respect to some specifications (crosstalk level and insertion loss). Finally, an analysis of output values for which some requirements (crosstalk level, insertion) loss are not fulfilled provide some insights about possible adjustment of guidelines in terms of parameter ranges. Finally, a practical design example is given to illustrate the methodology.