基于局部抑制后神经元的随机存储器模式识别系统

Zheng Zhou, Peng Huang, Yuning Jiang, Zhe Chen, Chen Liu, Lifeng Liu, Xiaoyan Liu, Jinfeng Kang
{"title":"基于局部抑制后神经元的随机存储器模式识别系统","authors":"Zheng Zhou, Peng Huang, Yuning Jiang, Zhe Chen, Chen Liu, Lifeng Liu, Xiaoyan Liu, Jinfeng Kang","doi":"10.23919/SNW.2017.8242340","DOIUrl":null,"url":null,"abstract":"A novel RRAM-based pattern recognition system with locally inhibited post-neurons is developed. The system is able to learn the whole MNIST training set (60,000 patterns). By using the system, the same post-neuron is fired by the similar patterns in the same training class, which causes the reduction of hardware cost. With the locally inhibited post-neuron, the system can achieve more than 90.73% recognition accuracy.","PeriodicalId":424135,"journal":{"name":"2017 Silicon Nanoelectronics Workshop (SNW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RRAM-based pattern recognition system with locally inhibited post-neurons\",\"authors\":\"Zheng Zhou, Peng Huang, Yuning Jiang, Zhe Chen, Chen Liu, Lifeng Liu, Xiaoyan Liu, Jinfeng Kang\",\"doi\":\"10.23919/SNW.2017.8242340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel RRAM-based pattern recognition system with locally inhibited post-neurons is developed. The system is able to learn the whole MNIST training set (60,000 patterns). By using the system, the same post-neuron is fired by the similar patterns in the same training class, which causes the reduction of hardware cost. With the locally inhibited post-neuron, the system can achieve more than 90.73% recognition accuracy.\",\"PeriodicalId\":424135,\"journal\":{\"name\":\"2017 Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SNW.2017.8242340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2017.8242340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于随机存储器的后神经元局部抑制模式识别系统。该系统能够学习整个MNIST训练集(60,000个模式)。通过使用该系统,在相同的训练课程中使用相似的模式激发相同的后神经元,从而降低了硬件成本。通过局部抑制后神经元,系统的识别准确率达到90.73%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RRAM-based pattern recognition system with locally inhibited post-neurons
A novel RRAM-based pattern recognition system with locally inhibited post-neurons is developed. The system is able to learn the whole MNIST training set (60,000 patterns). By using the system, the same post-neuron is fired by the similar patterns in the same training class, which causes the reduction of hardware cost. With the locally inhibited post-neuron, the system can achieve more than 90.73% recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting room-temperature 1.54 μιη photoluminescence of ErOx centers in silicon at extremely low concentration Undoped SiGe FETs with metal-insulator-semiconductor contacts Improved electrical characteristics and reliability of multi-stacking PNPN junctionless transistors using channel depletion effect Program/erase speed and data retention trade-off in negative capacitance versatile memory Investigations on dynamic characteristics of ferroelectric Hf02 based on multi-domain interaction model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1