{"title":"一种工艺变化补偿的CMOS微机械电容式触觉传感器","authors":"Hao-Cheng Tsai, T. Wu, T. Tsai","doi":"10.1109/BioCAS.2013.6679709","DOIUrl":null,"url":null,"abstract":"This paper presents a standard-CMOS-fabricated capacitive tactile sensor with high sensitivity and a sensing circuit with compensation of process variations. Both of the sensor and sensing circuit are fabricated on a single chip by a TSMC 0.35μm CMOS MEMS technology. In order to create high sensitivity of the sensor for sensing circuit, a T-shaped protrusion is proposed. This sensor is constituted by the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few simple post-processing steps. With the fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction, process variations are compensated. The measured sensitivity of the sensing circuit is 18mV/fF.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"256 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A CMOS micromachined capacitive tactile sensor with compensation of process variations\",\"authors\":\"Hao-Cheng Tsai, T. Wu, T. Tsai\",\"doi\":\"10.1109/BioCAS.2013.6679709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a standard-CMOS-fabricated capacitive tactile sensor with high sensitivity and a sensing circuit with compensation of process variations. Both of the sensor and sensing circuit are fabricated on a single chip by a TSMC 0.35μm CMOS MEMS technology. In order to create high sensitivity of the sensor for sensing circuit, a T-shaped protrusion is proposed. This sensor is constituted by the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few simple post-processing steps. With the fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction, process variations are compensated. The measured sensitivity of the sensing circuit is 18mV/fF.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"256 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CMOS micromachined capacitive tactile sensor with compensation of process variations
This paper presents a standard-CMOS-fabricated capacitive tactile sensor with high sensitivity and a sensing circuit with compensation of process variations. Both of the sensor and sensing circuit are fabricated on a single chip by a TSMC 0.35μm CMOS MEMS technology. In order to create high sensitivity of the sensor for sensing circuit, a T-shaped protrusion is proposed. This sensor is constituted by the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few simple post-processing steps. With the fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction, process variations are compensated. The measured sensitivity of the sensing circuit is 18mV/fF.