{"title":"自适应学习和知识发现的不断发展的连接主义系统:方法、工具和应用","authors":"N. Kasabov","doi":"10.1109/ICONIP.2002.1198126","DOIUrl":null,"url":null,"abstract":"The paper describes what evolving processes are and presents a computational model called evolving connectionist systems (ECOS). The model is based on principles from both brain organization and genetics. The applicability of the model for dynamic modeling and knowledge discovery in the areas of brain study, bioinformatics, speech and language learning, adaptive control and adaptive decision support is discussed.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evolving connectionist systems for adaptive learning and knowledge discovery: methods, tools, applications\",\"authors\":\"N. Kasabov\",\"doi\":\"10.1109/ICONIP.2002.1198126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes what evolving processes are and presents a computational model called evolving connectionist systems (ECOS). The model is based on principles from both brain organization and genetics. The applicability of the model for dynamic modeling and knowledge discovery in the areas of brain study, bioinformatics, speech and language learning, adaptive control and adaptive decision support is discussed.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1198126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolving connectionist systems for adaptive learning and knowledge discovery: methods, tools, applications
The paper describes what evolving processes are and presents a computational model called evolving connectionist systems (ECOS). The model is based on principles from both brain organization and genetics. The applicability of the model for dynamic modeling and knowledge discovery in the areas of brain study, bioinformatics, speech and language learning, adaptive control and adaptive decision support is discussed.