轴位MRI椎间盘半自动分割诊断腰椎间盘突出

W. Mbarki, M. Bouchouicha, Sébastien Frizzi, Frederick Tshibasu, L. Farhat, M. Sayadi
{"title":"轴位MRI椎间盘半自动分割诊断腰椎间盘突出","authors":"W. Mbarki, M. Bouchouicha, Sébastien Frizzi, Frederick Tshibasu, L. Farhat, M. Sayadi","doi":"10.1109/ATSIP49331.2020.9231737","DOIUrl":null,"url":null,"abstract":"We consider the problem of lower back pain and sciatica due to the loss of the disc’s height and the displacement of vertebrae. Our spine represents a combination of discs and vertebrae; between each two vertebrae, we can find an intervertebral disc. We will be interested in this paper to the lumbar discs, which are the most responsible for the lumbar herniation. Computer Aided Diagnosing (CAD) system for localizing herniated and normal intervertebral discs is a difficult task due to the method for treatment. Magnetic Resonance Imaging (MRI) are widely used to diagnose lower back pain and sciatica. We will be concentrated in this work on the T2-axial view MRI to successfully detect and classify the intervertebral discs which are the most important tasks to discuss in a system CAD. The originality of this paper consists in the development of a new method based on active contour and intuitionistic fuzzy C means (IFS) techniques to localize and extract disc from axial view MRI in order to find the type of herniated lumbar disc as foraminal, median or post lateral, we achieved 0.86 dice similarity index on 185 T2 axial MRI.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semi-automatic segmentation of intervertebral disc for diagnosing herniation using axial view MRI\",\"authors\":\"W. Mbarki, M. Bouchouicha, Sébastien Frizzi, Frederick Tshibasu, L. Farhat, M. Sayadi\",\"doi\":\"10.1109/ATSIP49331.2020.9231737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of lower back pain and sciatica due to the loss of the disc’s height and the displacement of vertebrae. Our spine represents a combination of discs and vertebrae; between each two vertebrae, we can find an intervertebral disc. We will be interested in this paper to the lumbar discs, which are the most responsible for the lumbar herniation. Computer Aided Diagnosing (CAD) system for localizing herniated and normal intervertebral discs is a difficult task due to the method for treatment. Magnetic Resonance Imaging (MRI) are widely used to diagnose lower back pain and sciatica. We will be concentrated in this work on the T2-axial view MRI to successfully detect and classify the intervertebral discs which are the most important tasks to discuss in a system CAD. The originality of this paper consists in the development of a new method based on active contour and intuitionistic fuzzy C means (IFS) techniques to localize and extract disc from axial view MRI in order to find the type of herniated lumbar disc as foraminal, median or post lateral, we achieved 0.86 dice similarity index on 185 T2 axial MRI.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑下背部疼痛和坐骨神经痛的问题,由于椎间盘的高度损失和椎体移位。我们的脊柱是椎间盘和椎骨的结合;在每两个椎骨之间,我们可以找到一个椎间盘。我们将对腰椎间盘感兴趣,这是腰椎突出的主要原因。计算机辅助诊断(CAD)系统定位突出和正常的椎间盘是一项困难的任务,由于治疗方法。磁共振成像(MRI)被广泛用于诊断腰痛和坐骨神经痛。我们将集中在t2轴位MRI上,以成功地检测和分类椎间盘,这是在系统CAD中讨论的最重要的任务。本文的创新之处在于开发了一种基于活动轮廓和直觉模糊C均值(IFS)技术的轴向MRI定位和提取椎间盘的新方法,以确定腰椎间盘突出的类型是椎间孔型、中位型还是后外侧型,我们在185 T2轴向MRI上获得了0.86 dice相似指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-automatic segmentation of intervertebral disc for diagnosing herniation using axial view MRI
We consider the problem of lower back pain and sciatica due to the loss of the disc’s height and the displacement of vertebrae. Our spine represents a combination of discs and vertebrae; between each two vertebrae, we can find an intervertebral disc. We will be interested in this paper to the lumbar discs, which are the most responsible for the lumbar herniation. Computer Aided Diagnosing (CAD) system for localizing herniated and normal intervertebral discs is a difficult task due to the method for treatment. Magnetic Resonance Imaging (MRI) are widely used to diagnose lower back pain and sciatica. We will be concentrated in this work on the T2-axial view MRI to successfully detect and classify the intervertebral discs which are the most important tasks to discuss in a system CAD. The originality of this paper consists in the development of a new method based on active contour and intuitionistic fuzzy C means (IFS) techniques to localize and extract disc from axial view MRI in order to find the type of herniated lumbar disc as foraminal, median or post lateral, we achieved 0.86 dice similarity index on 185 T2 axial MRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1