{"title":"基于自调谐控制器的感应充电站无传感器电动车检测","authors":"M. Moghaddami, Aditya Sundararajan, A. Sarwat","doi":"10.1109/ITEC-INDIA.2017.8333848","DOIUrl":null,"url":null,"abstract":"A sensorless electric vehicle (EV) detection mechanism for inductive charging stations is proposed. The proposed method is based on the detection of small resonance frequency deviations from the nominal resonance frequency which are due to the presence of the vehicle. Self-tuning controllers are utilized for fast and accurate resonance frequency tracking in inductive charging systems. The proposed method uses the transmitter magnetic structure of inductive charging systems at very low power for vehicle detection and thereby, eliminates the need for sensor-based detection mechanisms. The proposed method is simulated using 2D and 3D finite element analysis (FEA) and the results are presented. The results show that in a typical inductive charging station, vehicles can be detected within 1.5 meters from the transmitter pad.","PeriodicalId":312418,"journal":{"name":"2017 IEEE Transportation Electrification Conference (ITEC-India)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sensorless electric vehicle detection in inductive charging stations using self-tuning controllers\",\"authors\":\"M. Moghaddami, Aditya Sundararajan, A. Sarwat\",\"doi\":\"10.1109/ITEC-INDIA.2017.8333848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sensorless electric vehicle (EV) detection mechanism for inductive charging stations is proposed. The proposed method is based on the detection of small resonance frequency deviations from the nominal resonance frequency which are due to the presence of the vehicle. Self-tuning controllers are utilized for fast and accurate resonance frequency tracking in inductive charging systems. The proposed method uses the transmitter magnetic structure of inductive charging systems at very low power for vehicle detection and thereby, eliminates the need for sensor-based detection mechanisms. The proposed method is simulated using 2D and 3D finite element analysis (FEA) and the results are presented. The results show that in a typical inductive charging station, vehicles can be detected within 1.5 meters from the transmitter pad.\",\"PeriodicalId\":312418,\"journal\":{\"name\":\"2017 IEEE Transportation Electrification Conference (ITEC-India)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Transportation Electrification Conference (ITEC-India)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC-INDIA.2017.8333848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Transportation Electrification Conference (ITEC-India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC-INDIA.2017.8333848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensorless electric vehicle detection in inductive charging stations using self-tuning controllers
A sensorless electric vehicle (EV) detection mechanism for inductive charging stations is proposed. The proposed method is based on the detection of small resonance frequency deviations from the nominal resonance frequency which are due to the presence of the vehicle. Self-tuning controllers are utilized for fast and accurate resonance frequency tracking in inductive charging systems. The proposed method uses the transmitter magnetic structure of inductive charging systems at very low power for vehicle detection and thereby, eliminates the need for sensor-based detection mechanisms. The proposed method is simulated using 2D and 3D finite element analysis (FEA) and the results are presented. The results show that in a typical inductive charging station, vehicles can be detected within 1.5 meters from the transmitter pad.