基于人工神经网络的高压直流系统故障分类分析

P. Sanjeevikumar, Benish Paily, M. Basu, M. Conlon
{"title":"基于人工神经网络的高压直流系统故障分类分析","authors":"P. Sanjeevikumar, Benish Paily, M. Basu, M. Conlon","doi":"10.1109/UPEC.2014.6934775","DOIUrl":null,"url":null,"abstract":"This paper presents the identification and classification of different faults that can occur in a LCC-HVDC system, with the help of artificial neural network (ANN) training algorithm technique. In particular, single-line to ground, double-line to ground, line-line, HVDC transmission line (dc link) and load side inverter faults are examined. A complete model of a 12-pulse LCC-HVDC system together with an ANN algorithm is modeled in numerical simulation software. The output of the ANN can predict the change in appropriate firing angle required for the HVDC rectifier unit under steady state normal operation and various fault conditions. A set of simulation results are provided to show the effectiveness of the ANN technique subjected to developed fault conditions.","PeriodicalId":414838,"journal":{"name":"2014 49th International Universities Power Engineering Conference (UPEC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Classification of fault analysis of HVDC systems using artificial neural network\",\"authors\":\"P. Sanjeevikumar, Benish Paily, M. Basu, M. Conlon\",\"doi\":\"10.1109/UPEC.2014.6934775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the identification and classification of different faults that can occur in a LCC-HVDC system, with the help of artificial neural network (ANN) training algorithm technique. In particular, single-line to ground, double-line to ground, line-line, HVDC transmission line (dc link) and load side inverter faults are examined. A complete model of a 12-pulse LCC-HVDC system together with an ANN algorithm is modeled in numerical simulation software. The output of the ANN can predict the change in appropriate firing angle required for the HVDC rectifier unit under steady state normal operation and various fault conditions. A set of simulation results are provided to show the effectiveness of the ANN technique subjected to developed fault conditions.\",\"PeriodicalId\":414838,\"journal\":{\"name\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2014.6934775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 49th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2014.6934775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文利用人工神经网络(ANN)训练算法对lc - hvdc系统中可能出现的各种故障进行识别和分类。特别是对单线对地、双线对地、直线、高压直流输电线路(直流链路)和负载侧逆变器故障进行检查。在数值模拟软件中建立了12脉冲LCC-HVDC系统的完整模型,并结合人工神经网络算法进行了建模。人工神经网络的输出可以预测高压直流整流机组在稳态正常运行和各种故障情况下所需的适当发射角的变化。仿真结果表明了该方法在复杂故障条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of fault analysis of HVDC systems using artificial neural network
This paper presents the identification and classification of different faults that can occur in a LCC-HVDC system, with the help of artificial neural network (ANN) training algorithm technique. In particular, single-line to ground, double-line to ground, line-line, HVDC transmission line (dc link) and load side inverter faults are examined. A complete model of a 12-pulse LCC-HVDC system together with an ANN algorithm is modeled in numerical simulation software. The output of the ANN can predict the change in appropriate firing angle required for the HVDC rectifier unit under steady state normal operation and various fault conditions. A set of simulation results are provided to show the effectiveness of the ANN technique subjected to developed fault conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transposing phasor equation into instantaneous values equations using Hilbert transform Optimal design of a hybrid distributed generation system Modelling of reduced GB transmission system in PSCAD/EMTDC Medium-voltage cable inductive coupling to metallic pipelines: A comprehensive study UPS system: How can future technology and topology improve the energy efficiency in data centers?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1