1.3光子学与电子学的融合

M. Smit, K. Williams, J. Tol
{"title":"1.3光子学与电子学的融合","authors":"M. Smit, K. Williams, J. Tol","doi":"10.1109/ISSCC.2019.8662321","DOIUrl":null,"url":null,"abstract":"The market for photonic integrated circuits (PICs) is rapidly growing. Photonic integration which is now the dominant technology in high-bandwidth and long-distance telecommunications is increasingly applied to shorter distances within data centers. Now, it is set to become also dominant in many other fields: PICs offer compelling performance advances in terms of precision, bandwidth, and energy efficiency. To enable uptake in new sectors, the availability of highly standardized (generic) photonic-integration-platform technologies is of key importance, as this separates design from technology, reducing barriers for new entrants. Another major challenge is low-cost energy-efficient integration of photonics with the electronic circuitry that is used for driving and controlling the photonic IC and processing its information. Today, the major platform technologies are indium phosphide (InP)-based monolithic integration and silicon (Si)-based photonics. InP technology offers integration of the full suite of photonic components, including lasers, optical amplifiers, and high-performance modulators. While Si photonics offers better compatibility with CMOS process facilities, it lacks the most important photonic building blocks: lasers and optical amplifiers. In this paper, we describe the current status and directions for future developments of InP-based generic integration, and we compare the potential of InP photonics and Si photonics for integration with controlling electronics. In what follows, we will focus in Section 1 on similarities and differences between InP and Si photonics. In Section 2, we will give a concise overview of the present status of this technology and how it compares with Silicon photonics. In sections 3 and 4 we will discuss membrane-based technologies which support efficient integration with electronics.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"1.3 Integration of Photonics and Electronics\",\"authors\":\"M. Smit, K. Williams, J. Tol\",\"doi\":\"10.1109/ISSCC.2019.8662321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The market for photonic integrated circuits (PICs) is rapidly growing. Photonic integration which is now the dominant technology in high-bandwidth and long-distance telecommunications is increasingly applied to shorter distances within data centers. Now, it is set to become also dominant in many other fields: PICs offer compelling performance advances in terms of precision, bandwidth, and energy efficiency. To enable uptake in new sectors, the availability of highly standardized (generic) photonic-integration-platform technologies is of key importance, as this separates design from technology, reducing barriers for new entrants. Another major challenge is low-cost energy-efficient integration of photonics with the electronic circuitry that is used for driving and controlling the photonic IC and processing its information. Today, the major platform technologies are indium phosphide (InP)-based monolithic integration and silicon (Si)-based photonics. InP technology offers integration of the full suite of photonic components, including lasers, optical amplifiers, and high-performance modulators. While Si photonics offers better compatibility with CMOS process facilities, it lacks the most important photonic building blocks: lasers and optical amplifiers. In this paper, we describe the current status and directions for future developments of InP-based generic integration, and we compare the potential of InP photonics and Si photonics for integration with controlling electronics. In what follows, we will focus in Section 1 on similarities and differences between InP and Si photonics. In Section 2, we will give a concise overview of the present status of this technology and how it compares with Silicon photonics. In sections 3 and 4 we will discuss membrane-based technologies which support efficient integration with electronics.\",\"PeriodicalId\":265551,\"journal\":{\"name\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2019.8662321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

光子集成电路(PICs)的市场正在迅速增长。光子集成是目前高带宽和远距离通信的主导技术,越来越多地应用于数据中心内的短距离通信。现在,它也将在许多其他领域占据主导地位:pic在精度、带宽和能源效率方面提供了令人信服的性能进步。为了使新领域能够吸收,高度标准化(通用)光子集成平台技术的可用性至关重要,因为这将设计与技术分离开来,减少了新进入者的障碍。另一个主要的挑战是将光子与用于驱动和控制光子集成电路及其信息处理的电子电路进行低成本、高能效的集成。今天,主要的平台技术是基于磷化铟(InP)的单片集成和基于硅(Si)的光子学。InP技术提供全套光子元件的集成,包括激光器、光放大器和高性能调制器。虽然硅光子学与CMOS工艺设施具有更好的兼容性,但它缺乏最重要的光子构建块:激光器和光放大器。在本文中,我们描述了基于InP的通用集成的现状和未来的发展方向,并比较了InP光子学和Si光子学与控制电子集成的潜力。在接下来的内容中,我们将在第1节集中讨论InP和Si光子学之间的异同。在第2节中,我们将简要概述该技术的现状以及它与硅光子学的比较。在第3节和第4节中,我们将讨论支持与电子器件有效集成的膜基技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1.3 Integration of Photonics and Electronics
The market for photonic integrated circuits (PICs) is rapidly growing. Photonic integration which is now the dominant technology in high-bandwidth and long-distance telecommunications is increasingly applied to shorter distances within data centers. Now, it is set to become also dominant in many other fields: PICs offer compelling performance advances in terms of precision, bandwidth, and energy efficiency. To enable uptake in new sectors, the availability of highly standardized (generic) photonic-integration-platform technologies is of key importance, as this separates design from technology, reducing barriers for new entrants. Another major challenge is low-cost energy-efficient integration of photonics with the electronic circuitry that is used for driving and controlling the photonic IC and processing its information. Today, the major platform technologies are indium phosphide (InP)-based monolithic integration and silicon (Si)-based photonics. InP technology offers integration of the full suite of photonic components, including lasers, optical amplifiers, and high-performance modulators. While Si photonics offers better compatibility with CMOS process facilities, it lacks the most important photonic building blocks: lasers and optical amplifiers. In this paper, we describe the current status and directions for future developments of InP-based generic integration, and we compare the potential of InP photonics and Si photonics for integration with controlling electronics. In what follows, we will focus in Section 1 on similarities and differences between InP and Si photonics. In Section 2, we will give a concise overview of the present status of this technology and how it compares with Silicon photonics. In sections 3 and 4 we will discuss membrane-based technologies which support efficient integration with electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
27.2 An Adiabatic Sense and Set Rectifier for Improved Maximum-Power-Point Tracking in Piezoelectric Harvesting with 541% Energy Extraction Gain 22.7 A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control 2.5 A 40×40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control 11.2 A CMOS Biosensor Array with 1024 3-Electrode Voltammetry Pixels and 93dB Dynamic Range 11.3 A Capacitive Biosensor for Cancer Diagnosis Using a Functionalized Microneedle and a 13.7b-Resolution Capacitance-to-Digital Converter from 1 to 100nF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1