{"title":"基于杠杆臂的可变刚度作动器的钢板弹簧弹性能量存储","authors":"E. Barrett, M. Fumagalli, R. Carloni","doi":"10.1109/IROS.2016.7759105","DOIUrl":null,"url":null,"abstract":"The increasing use of Variable Stiffness Actuators (VSAs) in robotic joints is helping robots to meet the demands of human-robot interaction, requiring high safety and adaptability. The key feature of a VSA is the ability to exploit internal elastic elements to obtain a variable output stiffness. These allow the joints to store mechanical energy supplied through interaction with the environment and make the system more robust, efficient, and safe. This paper discusses the design of leaf springs for a sub-class of VSAs that use variable lever arm ratios as means to change their output stiffness. Given the trade-off between compactness and the maximum energy storage capacity, the internal springs' dimensions and material choice are assessed through a theoretical analysis and practical experiments.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Elastic energy storage in leaf springs for a lever-arm based Variable Stiffness Actuator\",\"authors\":\"E. Barrett, M. Fumagalli, R. Carloni\",\"doi\":\"10.1109/IROS.2016.7759105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing use of Variable Stiffness Actuators (VSAs) in robotic joints is helping robots to meet the demands of human-robot interaction, requiring high safety and adaptability. The key feature of a VSA is the ability to exploit internal elastic elements to obtain a variable output stiffness. These allow the joints to store mechanical energy supplied through interaction with the environment and make the system more robust, efficient, and safe. This paper discusses the design of leaf springs for a sub-class of VSAs that use variable lever arm ratios as means to change their output stiffness. Given the trade-off between compactness and the maximum energy storage capacity, the internal springs' dimensions and material choice are assessed through a theoretical analysis and practical experiments.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elastic energy storage in leaf springs for a lever-arm based Variable Stiffness Actuator
The increasing use of Variable Stiffness Actuators (VSAs) in robotic joints is helping robots to meet the demands of human-robot interaction, requiring high safety and adaptability. The key feature of a VSA is the ability to exploit internal elastic elements to obtain a variable output stiffness. These allow the joints to store mechanical energy supplied through interaction with the environment and make the system more robust, efficient, and safe. This paper discusses the design of leaf springs for a sub-class of VSAs that use variable lever arm ratios as means to change their output stiffness. Given the trade-off between compactness and the maximum energy storage capacity, the internal springs' dimensions and material choice are assessed through a theoretical analysis and practical experiments.