基于knn -情感分析的推文位置预测

Aml Mostafa, Walaa K. Gad, T. Abdelkader, N. Badr
{"title":"基于knn -情感分析的推文位置预测","authors":"Aml Mostafa, Walaa K. Gad, T. Abdelkader, N. Badr","doi":"10.1109/ICCES51560.2020.9334566","DOIUrl":null,"url":null,"abstract":"Geographical information is important in several applications, such as, advertising and recommending. Despite the availability and the existence of social media, especially twitter, the geographical coordinates are often hidden according to privacy reasons. In this paper, a new model is proposed to predict the tweet location based on the KNN-Sentimental Analysis (KNNSA) model. Predicting the tweet location based on the KNN-sentiment analysis (KNNSA) model extracts text features from the tweet in addition to the date and time features. Then, applying sentimental analysis and classifying the data by K-nearest neighbors (KNN) classifier. The (KNNSA) model is evaluated and compared to the previous work and it achieves better performance in terms of root mean squared error (RMSE) and of the mean absolute error (MAE).","PeriodicalId":247183,"journal":{"name":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting the Tweet Location Based on KNN-Sentimental Analysis\",\"authors\":\"Aml Mostafa, Walaa K. Gad, T. Abdelkader, N. Badr\",\"doi\":\"10.1109/ICCES51560.2020.9334566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geographical information is important in several applications, such as, advertising and recommending. Despite the availability and the existence of social media, especially twitter, the geographical coordinates are often hidden according to privacy reasons. In this paper, a new model is proposed to predict the tweet location based on the KNN-Sentimental Analysis (KNNSA) model. Predicting the tweet location based on the KNN-sentiment analysis (KNNSA) model extracts text features from the tweet in addition to the date and time features. Then, applying sentimental analysis and classifying the data by K-nearest neighbors (KNN) classifier. The (KNNSA) model is evaluated and compared to the previous work and it achieves better performance in terms of root mean squared error (RMSE) and of the mean absolute error (MAE).\",\"PeriodicalId\":247183,\"journal\":{\"name\":\"2020 15th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES51560.2020.9334566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES51560.2020.9334566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

地理信息在许多应用中都很重要,比如广告和推荐。尽管社交媒体,尤其是twitter的存在和可用性,但出于隐私原因,地理坐标通常是隐藏的。本文提出了一种基于KNNSA (knn - sentiment Analysis)模型的推文位置预测模型。基于KNNSA (KNN-sentiment analysis)模型的推文位置预测,除了从推文中提取日期和时间特征外,还提取了文本特征。然后,应用情感分析,采用k近邻分类器对数据进行分类。对(KNNSA)模型进行了评估和比较,发现该模型在均方根误差(RMSE)和平均绝对误差(MAE)方面取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the Tweet Location Based on KNN-Sentimental Analysis
Geographical information is important in several applications, such as, advertising and recommending. Despite the availability and the existence of social media, especially twitter, the geographical coordinates are often hidden according to privacy reasons. In this paper, a new model is proposed to predict the tweet location based on the KNN-Sentimental Analysis (KNNSA) model. Predicting the tweet location based on the KNN-sentiment analysis (KNNSA) model extracts text features from the tweet in addition to the date and time features. Then, applying sentimental analysis and classifying the data by K-nearest neighbors (KNN) classifier. The (KNNSA) model is evaluated and compared to the previous work and it achieves better performance in terms of root mean squared error (RMSE) and of the mean absolute error (MAE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Proposed System for the Identification of Modem Arabic Poetry Meters (IMAP) Evaluating the Modsecurity Web Application Firewall Against SQL Injection Attacks Low-Power Low-Complexity FM-UWB Transmitter in 130nm CMOS for WBAN Applications Blade Angle Control Using TLBO Based Modified Adaptive Controller Clustering Research Papers Using Genetic Algorithm Optimized Self-Organizing Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1