结合合成少数派过采样技术和子集特征选择技术的类不平衡问题

Pawan Lachheta, S. Bawa
{"title":"结合合成少数派过采样技术和子集特征选择技术的类不平衡问题","authors":"Pawan Lachheta, S. Bawa","doi":"10.1145/2979779.2979804","DOIUrl":null,"url":null,"abstract":"Building an effective classification model when the high dimensional data is suffering from class imbalance problem is a major challenge. The problem is severe when negative samples have large percentages than positive samples. To surmount the class imbalance and high dimensionality issues in the dataset, we propose a SFS framework that comprises of SMOTE filters, which are used for balancing the datasets, as well as feature ranker for pre-processing of data. The framework is developed using R language and various R packages. Then the performance of SFS framework is evaluated and found that proposed framework outperforms than other state-of-the-art methods.","PeriodicalId":298730,"journal":{"name":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Combining Synthetic Minority Oversampling Technique and Subset Feature Selection Technique For Class Imbalance Problem\",\"authors\":\"Pawan Lachheta, S. Bawa\",\"doi\":\"10.1145/2979779.2979804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building an effective classification model when the high dimensional data is suffering from class imbalance problem is a major challenge. The problem is severe when negative samples have large percentages than positive samples. To surmount the class imbalance and high dimensionality issues in the dataset, we propose a SFS framework that comprises of SMOTE filters, which are used for balancing the datasets, as well as feature ranker for pre-processing of data. The framework is developed using R language and various R packages. Then the performance of SFS framework is evaluated and found that proposed framework outperforms than other state-of-the-art methods.\",\"PeriodicalId\":298730,\"journal\":{\"name\":\"Proceedings of the International Conference on Advances in Information Communication Technology & Computing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Advances in Information Communication Technology & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2979779.2979804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2979779.2979804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

当高维数据存在类不平衡问题时,如何建立有效的分类模型是一个重大的挑战。当阴性样本的百分比大于阳性样本时,问题就很严重了。为了克服数据集中的类不平衡和高维问题,我们提出了一个SFS框架,该框架包括用于平衡数据集的SMOTE过滤器,以及用于数据预处理的特征排序器。该框架是使用R语言和各种R包开发的。然后对SFS框架的性能进行了评估,发现所提出的框架优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Synthetic Minority Oversampling Technique and Subset Feature Selection Technique For Class Imbalance Problem
Building an effective classification model when the high dimensional data is suffering from class imbalance problem is a major challenge. The problem is severe when negative samples have large percentages than positive samples. To surmount the class imbalance and high dimensionality issues in the dataset, we propose a SFS framework that comprises of SMOTE filters, which are used for balancing the datasets, as well as feature ranker for pre-processing of data. The framework is developed using R language and various R packages. Then the performance of SFS framework is evaluated and found that proposed framework outperforms than other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Algorithm with Mixed Crossover approach for Travelling Salesman Problem An Empirical Study on Fault Prediction using Token-Based Approach Implementing an Authentication Mechanism for Machine Deletion on the Cloud Multi-agent Web Service Composition using Partially Observable Markov Decision Process Forecasting Stock Market Movements Using Various Kernel Functions in Support Vector Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1