基于多模态传感器数据的下肢外骨骼运动分类特征空间探索

Tilman Daab, Isabel Patzer, R. Mikut, T. Asfour
{"title":"基于多模态传感器数据的下肢外骨骼运动分类特征空间探索","authors":"Tilman Daab, Isabel Patzer, R. Mikut, T. Asfour","doi":"10.1109/Humanoids43949.2019.9035014","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of finding a minimal multi-modal sensor setup for motion classification in lower limb exoskeleton applications while maintaining the classification performance. We present an approach for a systematic exploration of the feature space and feature space dimensionality reduction for motion recognition using Hidden Markov Models (HMMs). We evaluated our approach using IMU and force sensor data with 10 subjects performing 14 different daily activities. We perform a dimensionality reduction on sensor feature level with single- and multi-subjects and we explore the feature space using fine-grained features such as the force value of a single direction. Additionally, we investigate the influence of physical characteristics on the classification quality. Our results show that a subject specific and general reduction of the sensors is possible while still achieving the same classification performance.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Feature Space Exploration for Motion Classification Based on Multi-Modal Sensor Data for Lower Limb Exoskeletons\",\"authors\":\"Tilman Daab, Isabel Patzer, R. Mikut, T. Asfour\",\"doi\":\"10.1109/Humanoids43949.2019.9035014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of finding a minimal multi-modal sensor setup for motion classification in lower limb exoskeleton applications while maintaining the classification performance. We present an approach for a systematic exploration of the feature space and feature space dimensionality reduction for motion recognition using Hidden Markov Models (HMMs). We evaluated our approach using IMU and force sensor data with 10 subjects performing 14 different daily activities. We perform a dimensionality reduction on sensor feature level with single- and multi-subjects and we explore the feature space using fine-grained features such as the force value of a single direction. Additionally, we investigate the influence of physical characteristics on the classification quality. Our results show that a subject specific and general reduction of the sensors is possible while still achieving the same classification performance.\",\"PeriodicalId\":404758,\"journal\":{\"name\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids43949.2019.9035014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们解决了在保持分类性能的同时,为下肢外骨骼应用中的运动分类找到最小多模态传感器设置的问题。我们提出了一种使用隐马尔可夫模型(hmm)系统地探索运动识别的特征空间和特征空间降维的方法。我们使用IMU和力传感器数据对10名受试者进行14种不同的日常活动进行评估。我们在单个和多个主题的传感器特征级别上执行降维,并使用细粒度特征(如单个方向的力值)探索特征空间。此外,我们还研究了物理特性对分类质量的影响。我们的结果表明,在仍然达到相同的分类性能的同时,传感器的特定主题和一般减少是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Space Exploration for Motion Classification Based on Multi-Modal Sensor Data for Lower Limb Exoskeletons
In this paper, we address the problem of finding a minimal multi-modal sensor setup for motion classification in lower limb exoskeleton applications while maintaining the classification performance. We present an approach for a systematic exploration of the feature space and feature space dimensionality reduction for motion recognition using Hidden Markov Models (HMMs). We evaluated our approach using IMU and force sensor data with 10 subjects performing 14 different daily activities. We perform a dimensionality reduction on sensor feature level with single- and multi-subjects and we explore the feature space using fine-grained features such as the force value of a single direction. Additionally, we investigate the influence of physical characteristics on the classification quality. Our results show that a subject specific and general reduction of the sensors is possible while still achieving the same classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position-Based Lateral Balance Control for Knee-Stretched Biped Robot Mechanistic Properties of Five-bar Parallel Mechanism for Leg Structure Based on Spring Loaded Inverted Pendulum A deep reinforcement learning based approach towards generating human walking behavior with a neuromuscular model Using Virtual Reality to Examine the Neural and Physiological Anxiety-Related Responses to Balance-Demanding Target-Reaching Leaning Tasks Motion Retargeting and Control for Teleoperated Physical Human-Robot Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1