数字MOS VLSI的开关级延迟模型

J. Ousterhout
{"title":"数字MOS VLSI的开关级延迟模型","authors":"J. Ousterhout","doi":"10.1145/62882.62941","DOIUrl":null,"url":null,"abstract":"This paper presents fast, simple, and relatively accurate delay models for large digital MOS circuits. Delay modeling is organized around chains of switches and nodes called stages, instead of logic gates. The use of stages permits both logic gates and pass transistor arrays to be handled in a uniform fashion. Three delay models are presented, ranging from an RC model that typically errs by 25% to a slope-based model whose delay estimates are typically within 10% of SPICE's estimates. The slope model is parameterized in terms of the ratio between the slopes of a stage's input and output waveforms. All the models have been implemented in the Crystal timing analyzer. They are evaluated by comparing their delay estimates to SPICE, using a dozen critical paths from two VLSI designs.","PeriodicalId":188431,"journal":{"name":"21st Design Automation Conference Proceedings","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":"{\"title\":\"Switch-Level Delay Models for Digital MOS VLSI\",\"authors\":\"J. Ousterhout\",\"doi\":\"10.1145/62882.62941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents fast, simple, and relatively accurate delay models for large digital MOS circuits. Delay modeling is organized around chains of switches and nodes called stages, instead of logic gates. The use of stages permits both logic gates and pass transistor arrays to be handled in a uniform fashion. Three delay models are presented, ranging from an RC model that typically errs by 25% to a slope-based model whose delay estimates are typically within 10% of SPICE's estimates. The slope model is parameterized in terms of the ratio between the slopes of a stage's input and output waveforms. All the models have been implemented in the Crystal timing analyzer. They are evaluated by comparing their delay estimates to SPICE, using a dozen critical paths from two VLSI designs.\",\"PeriodicalId\":188431,\"journal\":{\"name\":\"21st Design Automation Conference Proceedings\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st Design Automation Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/62882.62941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st Design Automation Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/62882.62941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

摘要

本文提出了一种快速、简单、相对准确的大型数字MOS电路延迟模型。延迟建模是围绕称为阶段的开关链和节点组织的,而不是逻辑门。级的使用允许逻辑门和通过晶体管阵列以统一的方式处理。提出了三种延迟模型,从通常误差为25%的RC模型到延迟估计通常在SPICE估计的10%以内的基于斜率的模型。斜率模型是根据一个阶段的输入和输出波形的斜率之比来参数化的。所有的模型都在晶体定时分析仪中得到了实现。通过将其延迟估计与SPICE进行比较来评估它们,使用来自两个VLSI设计的十几条关键路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Switch-Level Delay Models for Digital MOS VLSI
This paper presents fast, simple, and relatively accurate delay models for large digital MOS circuits. Delay modeling is organized around chains of switches and nodes called stages, instead of logic gates. The use of stages permits both logic gates and pass transistor arrays to be handled in a uniform fashion. Three delay models are presented, ranging from an RC model that typically errs by 25% to a slope-based model whose delay estimates are typically within 10% of SPICE's estimates. The slope model is parameterized in terms of the ratio between the slopes of a stage's input and output waveforms. All the models have been implemented in the Crystal timing analyzer. They are evaluated by comparing their delay estimates to SPICE, using a dozen critical paths from two VLSI designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Engineering Design Environment IGES as an Interchange Format for Integrated Circuit Design Functional Testing Techniques for Digital LSI/VLSI Systems Functional Design Verification by Multi-Level Simulation Uniform Support for Information Handling and Problem Solving Required by the VLSI Design Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1