国立工程大学本科生学术风险预测模型

Hermán Garrafa Aragón, Iván Soto-Rodríguez
{"title":"国立工程大学本科生学术风险预测模型","authors":"Hermán Garrafa Aragón, Iván Soto-Rodríguez","doi":"10.21754/IECOS.V21I1.1073","DOIUrl":null,"url":null,"abstract":"El presente trabajo de investigación usó información no estructurada generada en las unidades académicas de la Universidad Nacional de Ingeniería, a fin de predecir el nivel de riesgo académico de un estudiante, haciendo uso de técnicas de Machine Learning. \nLas fases en que se consideraron fueron: \n \nConstrucción del datamart: En esta fase se realizó integración de datos de las diferentes fuentes para construir el repositorio de datos objetivo, el cual se dividió en datos de entrenamiento y datos de prueba.   \nEntrenamiento del modelo: Elaboración del modelo de entrenamiento basado en los datos del datamart, aplicando Maquina de Soporte Vectorial. \nValidación y prueba del modelo: Evaluación del modelo obtenido anteriormente, usando los datos de prueba del datamart. \n","PeriodicalId":296414,"journal":{"name":"Revista IECOS","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelo de pronóstico de riesgo académico de los alumnos de pregrado de la Universidad Nacional de Ingeniería\",\"authors\":\"Hermán Garrafa Aragón, Iván Soto-Rodríguez\",\"doi\":\"10.21754/IECOS.V21I1.1073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El presente trabajo de investigación usó información no estructurada generada en las unidades académicas de la Universidad Nacional de Ingeniería, a fin de predecir el nivel de riesgo académico de un estudiante, haciendo uso de técnicas de Machine Learning. \\nLas fases en que se consideraron fueron: \\n \\nConstrucción del datamart: En esta fase se realizó integración de datos de las diferentes fuentes para construir el repositorio de datos objetivo, el cual se dividió en datos de entrenamiento y datos de prueba.   \\nEntrenamiento del modelo: Elaboración del modelo de entrenamiento basado en los datos del datamart, aplicando Maquina de Soporte Vectorial. \\nValidación y prueba del modelo: Evaluación del modelo obtenido anteriormente, usando los datos de prueba del datamart. \\n\",\"PeriodicalId\":296414,\"journal\":{\"name\":\"Revista IECOS\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista IECOS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21754/IECOS.V21I1.1073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista IECOS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21754/IECOS.V21I1.1073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用国立工程大学学术单位生成的非结构化信息,利用机器学习技术预测学生的学术风险水平。考虑的阶段是:构建数据集:在这个阶段,来自不同来源的数据进行了集成,以构建目标数据存储库,该存储库分为训练数据和测试数据。模型培训:基于datamart数据,应用矢量支持机开发培训模型。模型验证和测试:使用datamart测试数据对先前获得的模型进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelo de pronóstico de riesgo académico de los alumnos de pregrado de la Universidad Nacional de Ingeniería
El presente trabajo de investigación usó información no estructurada generada en las unidades académicas de la Universidad Nacional de Ingeniería, a fin de predecir el nivel de riesgo académico de un estudiante, haciendo uso de técnicas de Machine Learning. Las fases en que se consideraron fueron: Construcción del datamart: En esta fase se realizó integración de datos de las diferentes fuentes para construir el repositorio de datos objetivo, el cual se dividió en datos de entrenamiento y datos de prueba.   Entrenamiento del modelo: Elaboración del modelo de entrenamiento basado en los datos del datamart, aplicando Maquina de Soporte Vectorial. Validación y prueba del modelo: Evaluación del modelo obtenido anteriormente, usando los datos de prueba del datamart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inversión en recursos para crear valor: ¿Pero valor para quién? Energía y crecimiento económico en Perú: Una perspectiva de largo plazo mediante cointegración Modelo Azbel simplificado para ajustar tablas de mortalidad peruanas con fines previsionales Perú: Nivel educativo, productividad, ingreso personal y el desarrollo nacional 2007 – 2020 Pensamiento Crítico y Rendimiento Académico en estudiantes de último ciclo en FIEECS-UNI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1