学习物理定律:以介电流体中微米级粒子为例

Ion Matei, Maksym Zhenirovskyy, J. Kleer, C. Somarakis, J. Baras
{"title":"学习物理定律:以介电流体中微米级粒子为例","authors":"Ion Matei, Maksym Zhenirovskyy, J. Kleer, C. Somarakis, J. Baras","doi":"10.23919/acc45564.2020.9147716","DOIUrl":null,"url":null,"abstract":"We address the problem of learning laws governing the behavior of physical systems. As a use case we choose the discovery of the dynamics of micron-scale chiplets in dielectric fluid whose motion is controlled by a set of electric potential. We use the port-Hamiltonian formalism as a high level model structure that is continuously refined based on our understanding of the physical process. In addition, we use machine learning inspired models as low level representations. Representation structure is key in learning generalizable models, as shown by the learning results.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"20 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning physical laws: the case of micron size particles in dielectric fluid\",\"authors\":\"Ion Matei, Maksym Zhenirovskyy, J. Kleer, C. Somarakis, J. Baras\",\"doi\":\"10.23919/acc45564.2020.9147716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of learning laws governing the behavior of physical systems. As a use case we choose the discovery of the dynamics of micron-scale chiplets in dielectric fluid whose motion is controlled by a set of electric potential. We use the port-Hamiltonian formalism as a high level model structure that is continuously refined based on our understanding of the physical process. In addition, we use machine learning inspired models as low level representations. Representation structure is key in learning generalizable models, as shown by the learning results.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"20 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/acc45564.2020.9147716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc45564.2020.9147716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们解决的问题是学习控制物理系统行为的定律。作为一个用例,我们选择发现介电流体中微米尺度小晶的动力学,其运动由一组电势控制。我们使用波特-哈密顿形式作为一个高层次的模型结构,它是基于我们对物理过程的理解而不断改进的。此外,我们使用受机器学习启发的模型作为低级表示。学习结果表明,表征结构是学习可泛化模型的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning physical laws: the case of micron size particles in dielectric fluid
We address the problem of learning laws governing the behavior of physical systems. As a use case we choose the discovery of the dynamics of micron-scale chiplets in dielectric fluid whose motion is controlled by a set of electric potential. We use the port-Hamiltonian formalism as a high level model structure that is continuously refined based on our understanding of the physical process. In addition, we use machine learning inspired models as low level representations. Representation structure is key in learning generalizable models, as shown by the learning results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metric Interval Temporal Logic based Reinforcement Learning with Runtime Monitoring and Self-Correction Boundary Control of Coupled Hyperbolic PDEs for Two-dimensional Vibration Suppression of a Deep-sea Construction Vessel Localizing Data Manipulators in Distributed Mode Shape Identification of Power Systems Boundary prescribed–time stabilization of a pair of coupled reaction–diffusion equations An Optimization-Based Iterative Learning Control Design Method for UAV’s Trajectory Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1