Junsung Park, Minjae Kim, Jae‐Hyung Jang, Sung-Min Hong
{"title":"HfO2电阻式随机存取存储器中导电氧空位的性质及IV特性的紧凑建模","authors":"Junsung Park, Minjae Kim, Jae‐Hyung Jang, Sung-Min Hong","doi":"10.23919/SISPAD49475.2020.9241604","DOIUrl":null,"url":null,"abstract":"The HfO2-based resistive random-access-memory (RRAM) is studied. In the first part, two parameters of oxygen vacancies are extracted. The migration barrier of the oxygen vacancy (or the extended Frenkel pair) is calculated. The resistivity of a filament is also calculated. In the second part, an existing compact model for the RRAM is implemented and its results are compared with the experimental data","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of Conductive Oxygen Vacancies and Compact Modeling of IV Characteristics in HfO2 Resistive Random-Access-Memories\",\"authors\":\"Junsung Park, Minjae Kim, Jae‐Hyung Jang, Sung-Min Hong\",\"doi\":\"10.23919/SISPAD49475.2020.9241604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The HfO2-based resistive random-access-memory (RRAM) is studied. In the first part, two parameters of oxygen vacancies are extracted. The migration barrier of the oxygen vacancy (or the extended Frenkel pair) is calculated. The resistivity of a filament is also calculated. In the second part, an existing compact model for the RRAM is implemented and its results are compared with the experimental data\",\"PeriodicalId\":206964,\"journal\":{\"name\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"437 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SISPAD49475.2020.9241604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Properties of Conductive Oxygen Vacancies and Compact Modeling of IV Characteristics in HfO2 Resistive Random-Access-Memories
The HfO2-based resistive random-access-memory (RRAM) is studied. In the first part, two parameters of oxygen vacancies are extracted. The migration barrier of the oxygen vacancy (or the extended Frenkel pair) is calculated. The resistivity of a filament is also calculated. In the second part, an existing compact model for the RRAM is implemented and its results are compared with the experimental data