利用面部特征检测脑卒中症状的研究

Sabina Umirzakova, T. Whangbo
{"title":"利用面部特征检测脑卒中症状的研究","authors":"Sabina Umirzakova, T. Whangbo","doi":"10.1109/ICTC.2018.8539440","DOIUrl":null,"url":null,"abstract":"This paper present the early symptoms of stroke detection using face features. To achieve that, in this paper calculated wrinkles on forehead area, eye moving, mouth drooping, cheek line detection. Experimental results show that proposed stroke detection method achieved good results in this field.","PeriodicalId":417962,"journal":{"name":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"STUDY ON DETECT STROKE SYMPTOMS USING FACE FEATURES\",\"authors\":\"Sabina Umirzakova, T. Whangbo\",\"doi\":\"10.1109/ICTC.2018.8539440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper present the early symptoms of stroke detection using face features. To achieve that, in this paper calculated wrinkles on forehead area, eye moving, mouth drooping, cheek line detection. Experimental results show that proposed stroke detection method achieved good results in this field.\",\"PeriodicalId\":417962,\"journal\":{\"name\":\"2018 International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC.2018.8539440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC.2018.8539440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了利用面部特征检测脑卒中的早期症状。为了实现这一目标,本文计算了前额皱纹面积、眼球运动、嘴角下垂、脸颊线条检测。实验结果表明,该方法在该领域取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STUDY ON DETECT STROKE SYMPTOMS USING FACE FEATURES
This paper present the early symptoms of stroke detection using face features. To achieve that, in this paper calculated wrinkles on forehead area, eye moving, mouth drooping, cheek line detection. Experimental results show that proposed stroke detection method achieved good results in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Load Balancing Mechanism in Mobile Gateway with Heterogeneous Network A Generalized SDN Framework for Optical Wireless Communication Networks Hypermedia Applications with Transcoding Robust Data Embedding Method Effectiveness Analysis of Warning Service using V2X Communication Technology at Intersection Combined Access Barring for Energy and Delay Constrained Machine Type Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1