{"title":"A6工具钢轴的单向弯曲疲劳失效","authors":"","doi":"10.31399/asm.fach.machtools.c0047779","DOIUrl":null,"url":null,"abstract":"\n Two A6 tool steel (free machining grade) shafts, parts of a clamping device used for bending 5.7 cm OD tubing on an 8.6 cm radius, failed simultaneously under a maximum clamping force of 54,430 kg. The shaft was imposed with cyclic tensile stresses due to the clamping force and unidirectional bending stresses resulting from the nature of operation. Nonmetallic oxide-sulfide segregation was indicated by microscopic examination of the edge of the fracture surface. Both smooth and granular areas were revealed on visual examination of the fracture. The shaft was subjected to a low overstress as the smooth-textured fatigue zone was relatively large compared with the crystalline textured coarse final-fracture zone. The fatigue crack was nucleated by the nonmetallic inclusion that intersected the surface and initiated in the 0.25 mm radius fillet at a change in section due to stress concentration. To minimize this stress concentration, a larger radius fillet shaft at the critical change in section was suggested as corrective measure.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"8 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unidirectional-Bending Fatigue Failure of an A6 Tool Steel Shaft\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.machtools.c0047779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Two A6 tool steel (free machining grade) shafts, parts of a clamping device used for bending 5.7 cm OD tubing on an 8.6 cm radius, failed simultaneously under a maximum clamping force of 54,430 kg. The shaft was imposed with cyclic tensile stresses due to the clamping force and unidirectional bending stresses resulting from the nature of operation. Nonmetallic oxide-sulfide segregation was indicated by microscopic examination of the edge of the fracture surface. Both smooth and granular areas were revealed on visual examination of the fracture. The shaft was subjected to a low overstress as the smooth-textured fatigue zone was relatively large compared with the crystalline textured coarse final-fracture zone. The fatigue crack was nucleated by the nonmetallic inclusion that intersected the surface and initiated in the 0.25 mm radius fillet at a change in section due to stress concentration. To minimize this stress concentration, a larger radius fillet shaft at the critical change in section was suggested as corrective measure.\",\"PeriodicalId\":446028,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment\",\"volume\":\"8 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.machtools.c0047779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.machtools.c0047779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于弯曲半径为8.6 cm的5.7 cm外径油管的夹紧装置的两个A6工具钢(自由加工等级)轴在最大夹紧力54,430 kg下同时失效。由于夹紧力和由操作性质产生的单向弯曲应力,轴被施加了循环拉伸应力。断口边缘的显微检查显示有非金属氧化物-硫化物偏析。骨折目视检查显示光滑区和颗粒区。由于光滑织构的疲劳区相对于结晶织构的粗终断口区较大,轴受到了较低的过应力。疲劳裂纹由非金属夹杂物形核形成,夹杂物与表面相交,在因应力集中而导致截面变化的0.25 mm半径圆角处形成疲劳裂纹。为了减少应力集中,建议在临界断面变化处采用更大半径的圆角轴作为纠正措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unidirectional-Bending Fatigue Failure of an A6 Tool Steel Shaft
Two A6 tool steel (free machining grade) shafts, parts of a clamping device used for bending 5.7 cm OD tubing on an 8.6 cm radius, failed simultaneously under a maximum clamping force of 54,430 kg. The shaft was imposed with cyclic tensile stresses due to the clamping force and unidirectional bending stresses resulting from the nature of operation. Nonmetallic oxide-sulfide segregation was indicated by microscopic examination of the edge of the fracture surface. Both smooth and granular areas were revealed on visual examination of the fracture. The shaft was subjected to a low overstress as the smooth-textured fatigue zone was relatively large compared with the crystalline textured coarse final-fracture zone. The fatigue crack was nucleated by the nonmetallic inclusion that intersected the surface and initiated in the 0.25 mm radius fillet at a change in section due to stress concentration. To minimize this stress concentration, a larger radius fillet shaft at the critical change in section was suggested as corrective measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrogen Embrittlement of a Draw-in Bolt Rapid Wear of an Impact Breaker Bar Due to Excessive Retained Austenite Fatigue Fracture of a Rolling-Tool Mandrel Initiated at Cracks Formed by Machining of a Hole A Broken Cross-Recessed Die Made from High Speed Tool Steel Fatigue Failure of Piston Rod from Hydraulic Press
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1