Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c9001014
C. Craft
A tool used to stretch reinforcement wires in prestressed concrete failed. All eight individual jaws were broken. Visual examination of the fracture surfaces indicated that about half of the broken parts had a partially dendritic appearance. Further, fracture surfaces near the exteriors of the parts were clean and smooth, and there was evidence of a case. Examination of the flat surfaces of the parts revealed surface cracking where actual failure had not occurred. Chemical analysis showed the material to be a low-alloy carburizing steel. The microstructure was compatible with a steel which is cast, carburized, quenched, and tempered. The structure was generally satisfactory, except for the presence of severe shrinkage porosity. It was concluded that the presence of shrinkage porosity in critical areas was the primary cause of fracture. Extremely high hardness indicating a lack of adequate tempering was the secondary cause.
{"title":"Failure of Steel Jaws","authors":"C. Craft","doi":"10.31399/asm.fach.machtools.c9001014","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c9001014","url":null,"abstract":"\u0000 A tool used to stretch reinforcement wires in prestressed concrete failed. All eight individual jaws were broken. Visual examination of the fracture surfaces indicated that about half of the broken parts had a partially dendritic appearance. Further, fracture surfaces near the exteriors of the parts were clean and smooth, and there was evidence of a case. Examination of the flat surfaces of the parts revealed surface cracking where actual failure had not occurred. Chemical analysis showed the material to be a low-alloy carburizing steel. The microstructure was compatible with a steel which is cast, carburized, quenched, and tempered. The structure was generally satisfactory, except for the presence of severe shrinkage porosity. It was concluded that the presence of shrinkage porosity in critical areas was the primary cause of fracture. Extremely high hardness indicating a lack of adequate tempering was the secondary cause.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121512094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c9001155
Gudrun Urban
Milling machine arbors were inserted with satellite spindles having a maximum speed of 1500 rpm, and broke out between the groove and the flange. The appearance of the fracture surface was the same on both arbors. The pronounced scan lines characterized the fractures as fatigue fractures. The appearance of the fracture in the arbors indicated ductile fatigue fracture which had its origin in the radii between groove and flange. These radii of 0.15 and 0.2 mm were too small for the load on the milling machine. In addition there were grooves at the base of the radii which had an unfavorable effect on the life of the component by acting as notches with their resulting stress concentration. Considering the great hardness of the case, the small radii would have been critical even without grooves. Measures were taken so that the critical radius of the milling machine was increased and the surface roughness measured more precisely.
{"title":"Broken Milling Machine Arbors Made of 16 Mn Cr 5 E","authors":"Gudrun Urban","doi":"10.31399/asm.fach.machtools.c9001155","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c9001155","url":null,"abstract":"\u0000 Milling machine arbors were inserted with satellite spindles having a maximum speed of 1500 rpm, and broke out between the groove and the flange. The appearance of the fracture surface was the same on both arbors. The pronounced scan lines characterized the fractures as fatigue fractures. The appearance of the fracture in the arbors indicated ductile fatigue fracture which had its origin in the radii between groove and flange. These radii of 0.15 and 0.2 mm were too small for the load on the milling machine. In addition there were grooves at the base of the radii which had an unfavorable effect on the life of the component by acting as notches with their resulting stress concentration. Considering the great hardness of the case, the small radii would have been critical even without grooves. Measures were taken so that the critical radius of the milling machine was increased and the surface roughness measured more precisely.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129152499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c0047964
Drastic reduction in the service life of a production gearbox was observed. Within the gearbox, the axial load on a bevel gear (8620 steel, OD 9.2 cm) was taken by a thrust-type roller bearing (3.8 cm ID, 5.6 cm OD) in which a ground surface on the back of the bevel gear served as a raceway. Spalling damage on the ground bearing raceway at five equally spaced zones was disclosed by inspection of the bevel gear. The bearing raceway was checked for runout by mounting the gear on an arbor. It was found that the raceway undulated to the extent of 0.008 mm total indicator reading and a spalled area was observed at each high point. The presence of numerous cracks that resembled grinding cracks was revealed both by magnetic-particle inspection and microscopic examination. Spalling was produced by nonuniform loading in conjunction with grinding cracks. As corrective measures, the spindle of the grinding machine was reconditioned to eliminate the undulations and retained austenite was minimized by careful heat treatment.
{"title":"Contact-Fatigue Failure of a Raceway for a Thrust Bearing","authors":"","doi":"10.31399/asm.fach.machtools.c0047964","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c0047964","url":null,"abstract":"Drastic reduction in the service life of a production gearbox was observed. Within the gearbox, the axial load on a bevel gear (8620 steel, OD 9.2 cm) was taken by a thrust-type roller bearing (3.8 cm ID, 5.6 cm OD) in which a ground surface on the back of the bevel gear served as a raceway. Spalling damage on the ground bearing raceway at five equally spaced zones was disclosed by inspection of the bevel gear. The bearing raceway was checked for runout by mounting the gear on an arbor. It was found that the raceway undulated to the extent of 0.008 mm total indicator reading and a spalled area was observed at each high point. The presence of numerous cracks that resembled grinding cracks was revealed both by magnetic-particle inspection and microscopic examination. Spalling was produced by nonuniform loading in conjunction with grinding cracks. As corrective measures, the spindle of the grinding machine was reconditioned to eliminate the undulations and retained austenite was minimized by careful heat treatment.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128765422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c0047779
Two A6 tool steel (free machining grade) shafts, parts of a clamping device used for bending 5.7 cm OD tubing on an 8.6 cm radius, failed simultaneously under a maximum clamping force of 54,430 kg. The shaft was imposed with cyclic tensile stresses due to the clamping force and unidirectional bending stresses resulting from the nature of operation. Nonmetallic oxide-sulfide segregation was indicated by microscopic examination of the edge of the fracture surface. Both smooth and granular areas were revealed on visual examination of the fracture. The shaft was subjected to a low overstress as the smooth-textured fatigue zone was relatively large compared with the crystalline textured coarse final-fracture zone. The fatigue crack was nucleated by the nonmetallic inclusion that intersected the surface and initiated in the 0.25 mm radius fillet at a change in section due to stress concentration. To minimize this stress concentration, a larger radius fillet shaft at the critical change in section was suggested as corrective measure.
{"title":"Unidirectional-Bending Fatigue Failure of an A6 Tool Steel Shaft","authors":"","doi":"10.31399/asm.fach.machtools.c0047779","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c0047779","url":null,"abstract":"\u0000 Two A6 tool steel (free machining grade) shafts, parts of a clamping device used for bending 5.7 cm OD tubing on an 8.6 cm radius, failed simultaneously under a maximum clamping force of 54,430 kg. The shaft was imposed with cyclic tensile stresses due to the clamping force and unidirectional bending stresses resulting from the nature of operation. Nonmetallic oxide-sulfide segregation was indicated by microscopic examination of the edge of the fracture surface. Both smooth and granular areas were revealed on visual examination of the fracture. The shaft was subjected to a low overstress as the smooth-textured fatigue zone was relatively large compared with the crystalline textured coarse final-fracture zone. The fatigue crack was nucleated by the nonmetallic inclusion that intersected the surface and initiated in the 0.25 mm radius fillet at a change in section due to stress concentration. To minimize this stress concentration, a larger radius fillet shaft at the critical change in section was suggested as corrective measure.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"8 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134189616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c9001183
F. Naumann, F. Spies
In a continuously cast aluminum press stud, two small foreign metal slivers were found that had caused difficulties with the cable sheathing press. Spectroscopic examination revealed the slivers consisted of a chromium-molybdenum-vanadium steel with minor (unintentional) additions of copper, nickel, and cobalt. A steel of similar composition, X38Cr-MoV5 1 (W-No. 2343) was used for hot working tools. The sliver originated from a damaged press tool.
{"title":"Steel Sliver in a Continuously Cast Aluminum Press Stud","authors":"F. Naumann, F. Spies","doi":"10.31399/asm.fach.machtools.c9001183","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c9001183","url":null,"abstract":"\u0000 In a continuously cast aluminum press stud, two small foreign metal slivers were found that had caused difficulties with the cable sheathing press. Spectroscopic examination revealed the slivers consisted of a chromium-molybdenum-vanadium steel with minor (unintentional) additions of copper, nickel, and cobalt. A steel of similar composition, X38Cr-MoV5 1 (W-No. 2343) was used for hot working tools. The sliver originated from a damaged press tool.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"359 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132670665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c0089456
A cross-recessed die of D5 tool steel fractured in service. The die face was found to be subjected to shear and tensile stresses as a result of the forging pressures from the material being worked. The presence of numerous slag stringers was revealed by microscopic examination of an unetched longitudinal section taken through the die. The pattern was microscopically revealed after etching with 5 % nital to be due to severe chemical segregation or banding. Considerable variation in the hardness, corresponding to the banded and non-banded regions across the face of the specimen was observed. The fracture was found to have originated near the high-stress region of the die face examination of the fracture surface. Failure of the die was concluded to have originated in an area of abnormally high hardness which is prone to microcracking during heat treatment for this grade of tool steel
{"title":"Fracture of a Forging Die Caused by Segregation","authors":"","doi":"10.31399/asm.fach.machtools.c0089456","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c0089456","url":null,"abstract":"\u0000 A cross-recessed die of D5 tool steel fractured in service. The die face was found to be subjected to shear and tensile stresses as a result of the forging pressures from the material being worked. The presence of numerous slag stringers was revealed by microscopic examination of an unetched longitudinal section taken through the die. The pattern was microscopically revealed after etching with 5 % nital to be due to severe chemical segregation or banding. Considerable variation in the hardness, corresponding to the banded and non-banded regions across the face of the specimen was observed. The fracture was found to have originated near the high-stress region of the die face examination of the fracture surface. Failure of the die was concluded to have originated in an area of abnormally high hardness which is prone to microcracking during heat treatment for this grade of tool steel","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116823090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c9001413
The fractured end of a piston rod of a hydraulic press failed in line with the leading face of the piston retaining nut. Although the nut apparently had been seated uniformly, the face was polished, indicating that relative movement between it and the piston had taken place. Failure resulted from the culmination of two principal fatigue cracks which developed on approximately parallel planes from the roots of adjacent threads. A longitudinal section through the screw thread on the piston rod showed it had been carburized but not hardened, and that subsequent surface de-carburization to a depth of approximately 0.001 in. had occurred. It was concluded that insufficient tightening, as evidenced by the polish markings, was the main reason for failure, the portion of the rod therefore being subjected to a greater variation of cyclic stress during operation. The presence of the de-carburized layer lowered its resistance to the initiation of a fatigue crack to that of iron, considerably less than the resistance of the mild steel from which the rod was made and well below that shown by the carburized layer.
{"title":"Fatigue Failure of Piston Rod from Hydraulic Press","authors":"","doi":"10.31399/asm.fach.machtools.c9001413","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c9001413","url":null,"abstract":"\u0000 The fractured end of a piston rod of a hydraulic press failed in line with the leading face of the piston retaining nut. Although the nut apparently had been seated uniformly, the face was polished, indicating that relative movement between it and the piston had taken place. Failure resulted from the culmination of two principal fatigue cracks which developed on approximately parallel planes from the roots of adjacent threads. A longitudinal section through the screw thread on the piston rod showed it had been carburized but not hardened, and that subsequent surface de-carburization to a depth of approximately 0.001 in. had occurred. It was concluded that insufficient tightening, as evidenced by the polish markings, was the main reason for failure, the portion of the rod therefore being subjected to a greater variation of cyclic stress during operation. The presence of the de-carburized layer lowered its resistance to the initiation of a fatigue crack to that of iron, considerably less than the resistance of the mild steel from which the rod was made and well below that shown by the carburized layer.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116713385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c0045903
A 230 mm (9 in.) thick casing, fabricated from ASTM 235-55 low-carbon steel, of a 450 Mg (500 ton) extrusion press failed after 27 years of service. Initial visual examination revealed an area that exhibited multiple origins and classic beach marks radiating out approximately 75 mm (3 in.) from the origin along the wall of a hydraulic-oil bleed hole. Investigation with a SEM showed corrosion pits along the bleed hole wall, but oxidation and corrosion prevented review of microfractographic details. Vacuum epoxy encapsulation, sectioning of the bleed hole, and metallographic examination revealed a basic microstructure of pearlite and ferrite with bands of slightly finer pearlite, with a large concentration of inclusion stringers in the area of the fracture origin. Further investigation using an energy-dispersive x-ray analyzer showed high concentrations of sulfur and manganese. Thus, the failure appeared to have resulted from corrosion-assisted fatigue, and the inclusion concentration in the fracture-initiated area indicated that the chemical-composition limits for sulfur and manganese would have greatly exceeded material specifications. A higher quality steel was recommended for the replacement unit to lessen the possibility of such gross inclusion segregation and to improve the fracture toughness of the cylinder.
{"title":"Use of EPMA to Identify Microconstituents in a Failed Extrusion Press","authors":"","doi":"10.31399/asm.fach.machtools.c0045903","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c0045903","url":null,"abstract":"\u0000 A 230 mm (9 in.) thick casing, fabricated from ASTM 235-55 low-carbon steel, of a 450 Mg (500 ton) extrusion press failed after 27 years of service. Initial visual examination revealed an area that exhibited multiple origins and classic beach marks radiating out approximately 75 mm (3 in.) from the origin along the wall of a hydraulic-oil bleed hole. Investigation with a SEM showed corrosion pits along the bleed hole wall, but oxidation and corrosion prevented review of microfractographic details. Vacuum epoxy encapsulation, sectioning of the bleed hole, and metallographic examination revealed a basic microstructure of pearlite and ferrite with bands of slightly finer pearlite, with a large concentration of inclusion stringers in the area of the fracture origin. Further investigation using an energy-dispersive x-ray analyzer showed high concentrations of sulfur and manganese. Thus, the failure appeared to have resulted from corrosion-assisted fatigue, and the inclusion concentration in the fracture-initiated area indicated that the chemical-composition limits for sulfur and manganese would have greatly exceeded material specifications. A higher quality steel was recommended for the replacement unit to lessen the possibility of such gross inclusion segregation and to improve the fracture toughness of the cylinder.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"32 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121001383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c9001250
Egon Kauczor
A broken cross-recessed die was examined. Examination of the unetched, polished section for impurities revealed several coarse streaks of slag. The purity did not therefore correspond to the requirements set for a high speed tool steel of the given theoretical quality DMo 5. After etching with 5% nital the polished surface exhibited a pronounced, easily-visible, fibrous structure. Microscopic examination revealed that this etch pattern was produced by marked segregation bands. The very unfavorable structure for a high speed steel tool of these dimensions and subject to such stresses together with the low purity favored the fracture of the tool.
{"title":"A Broken Cross-Recessed Die Made from High Speed Tool Steel","authors":"Egon Kauczor","doi":"10.31399/asm.fach.machtools.c9001250","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c9001250","url":null,"abstract":"\u0000 A broken cross-recessed die was examined. Examination of the unetched, polished section for impurities revealed several coarse streaks of slag. The purity did not therefore correspond to the requirements set for a high speed tool steel of the given theoretical quality DMo 5. After etching with 5% nital the polished surface exhibited a pronounced, easily-visible, fibrous structure. Microscopic examination revealed that this etch pattern was produced by marked segregation bands. The very unfavorable structure for a high speed steel tool of these dimensions and subject to such stresses together with the low purity favored the fracture of the tool.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"144 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116420025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.31399/asm.fach.machtools.c0047840
The A2 tool steel mandrel, part of a rolling tool used for mechanically joining two tubes was fractured after making five rolled joints. A 6.4 mm diam hole was drilled by EDM through the square end of the hardened mandrel due to difficulty was experienced in withdrawing the tool. The fracture progressed into the threaded section and formed a pyramid-shape fragment after it was initiated at approximately 45 deg through the hole in the square end. An irregular zone of untempered martensite with cracks radiating from the surface of the hole (result of melting around hole) was revealed by metallographic examination. A microstructure of fine tempered martensite containing some carbide particles was exhibited by the core material away from the hole. Brittle fracture characteristics with beach marks were exhibited by the fracture surfaces which is characteristic of a torsional fatigue fracture. As a corrective measure, the hole through the square end of the mandrel was incorporated into the design of the tool and was drilled and reamed before heat treatment and specified hardness of the threaded portion and square end of the mandrel was reduced.
{"title":"Fatigue Fracture of a Rolling-Tool Mandrel Initiated at Cracks Formed by Machining of a Hole","authors":"","doi":"10.31399/asm.fach.machtools.c0047840","DOIUrl":"https://doi.org/10.31399/asm.fach.machtools.c0047840","url":null,"abstract":"\u0000 The A2 tool steel mandrel, part of a rolling tool used for mechanically joining two tubes was fractured after making five rolled joints. A 6.4 mm diam hole was drilled by EDM through the square end of the hardened mandrel due to difficulty was experienced in withdrawing the tool. The fracture progressed into the threaded section and formed a pyramid-shape fragment after it was initiated at approximately 45 deg through the hole in the square end. An irregular zone of untempered martensite with cracks radiating from the surface of the hole (result of melting around hole) was revealed by metallographic examination. A microstructure of fine tempered martensite containing some carbide particles was exhibited by the core material away from the hole. Brittle fracture characteristics with beach marks were exhibited by the fracture surfaces which is characteristic of a torsional fatigue fracture. As a corrective measure, the hole through the square end of the mandrel was incorporated into the design of the tool and was drilled and reamed before heat treatment and specified hardness of the threaded portion and square end of the mandrel was reduced.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115824624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}