{"title":"近辐射区超宽带电磁波信息提取","authors":"R. Akhmedov","doi":"10.15222/tkea2020.3-4.03","DOIUrl":null,"url":null,"abstract":"The authors study the dependence of the shape of electromagnetic pulse received in near radiation zone of the antenna on the observation point. The paper discusses negative and positive effects of this phenomenon on the wireless impulse communication and presents a new method of information extraction form ultrawideband electromagnetic pulse, comparing it to the traditional way of signal processing. \nThe method is based on modern deep learning technics and recurrent neural networks, namely physical long short-term memory. Moreover, the paper presents a concept of direct sequence ultrawideband (DS-UWB) impulse radio receiver based on a physical neural network. It is proposed to change the traditional way of radio signal processing and use a single neural network instead of a matched filter, a magnitude amplifier and a FPGA processor. The architecture of the physical neural network was designed with an intention to study the behavior of ultrawideband short pulse (UWB-SP) radio signal in near and far radiation zones. \nThe applicability of the neural radio concept is proved by simulation of AWGN communication channel for multiuser environment and real time RX signal processing by the designed neural network. The paper contains the results of a numerical modeling of the radiation-reception process and illustrations of the neural network training process. The lens impulse radiation antenna is considered as radiator of transient electromagnetic field for simulation. The radiation process is modeled with the help of the antenna’s transient response obtained using the evolution approach and the superposition principle in the form of Duhamel integral. \nThe prospects of using the proposed methodology in the problems of the Internet of Things are analyzed. The study shows that using the proposed method allows solving multipathing and multiuser problems even in near radiation zone.","PeriodicalId":231412,"journal":{"name":"Технология и конструирование в электронной аппаратуре","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information extraction from ultrawideband electromagnetic wave in near radiation zone\",\"authors\":\"R. Akhmedov\",\"doi\":\"10.15222/tkea2020.3-4.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors study the dependence of the shape of electromagnetic pulse received in near radiation zone of the antenna on the observation point. The paper discusses negative and positive effects of this phenomenon on the wireless impulse communication and presents a new method of information extraction form ultrawideband electromagnetic pulse, comparing it to the traditional way of signal processing. \\nThe method is based on modern deep learning technics and recurrent neural networks, namely physical long short-term memory. Moreover, the paper presents a concept of direct sequence ultrawideband (DS-UWB) impulse radio receiver based on a physical neural network. It is proposed to change the traditional way of radio signal processing and use a single neural network instead of a matched filter, a magnitude amplifier and a FPGA processor. The architecture of the physical neural network was designed with an intention to study the behavior of ultrawideband short pulse (UWB-SP) radio signal in near and far radiation zones. \\nThe applicability of the neural radio concept is proved by simulation of AWGN communication channel for multiuser environment and real time RX signal processing by the designed neural network. The paper contains the results of a numerical modeling of the radiation-reception process and illustrations of the neural network training process. The lens impulse radiation antenna is considered as radiator of transient electromagnetic field for simulation. The radiation process is modeled with the help of the antenna’s transient response obtained using the evolution approach and the superposition principle in the form of Duhamel integral. \\nThe prospects of using the proposed methodology in the problems of the Internet of Things are analyzed. The study shows that using the proposed method allows solving multipathing and multiuser problems even in near radiation zone.\",\"PeriodicalId\":231412,\"journal\":{\"name\":\"Технология и конструирование в электронной аппаратуре\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Технология и конструирование в электронной аппаратуре\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15222/tkea2020.3-4.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Технология и конструирование в электронной аппаратуре","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15222/tkea2020.3-4.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了天线近辐射区接收到的电磁脉冲形状与观测点的关系。讨论了这一现象对无线脉冲通信的消极和积极影响,提出了一种从超宽带电磁脉冲中提取信息的新方法,并与传统的信号处理方法进行了比较。该方法基于现代深度学习技术和递归神经网络,即物理长短期记忆。此外,本文还提出了一种基于物理神经网络的直接序列超宽带脉冲无线电接收机的概念。提出了一种改变传统无线电信号处理方式的方法,用单个神经网络代替匹配滤波器、幅度放大器和FPGA处理器。设计了物理神经网络的体系结构,旨在研究超宽带短脉冲(UWB-SP)无线电信号在近、远辐射区的行为。通过对多用户环境下AWGN通信信道的仿真以及所设计的神经网络对RX信号的实时处理,验证了神经无线电概念的适用性。本文给出了辐射接收过程的数值模拟结果和神经网络训练过程的实例。将透镜脉冲辐射天线作为瞬态电磁场的辐射体进行仿真。利用演化法和叠加原理得到的天线瞬态响应,以Duhamel积分的形式对辐射过程进行建模。分析了该方法在物联网问题研究中的应用前景。研究表明,使用该方法可以解决近辐射区域的多路径和多用户问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information extraction from ultrawideband electromagnetic wave in near radiation zone
The authors study the dependence of the shape of electromagnetic pulse received in near radiation zone of the antenna on the observation point. The paper discusses negative and positive effects of this phenomenon on the wireless impulse communication and presents a new method of information extraction form ultrawideband electromagnetic pulse, comparing it to the traditional way of signal processing. The method is based on modern deep learning technics and recurrent neural networks, namely physical long short-term memory. Moreover, the paper presents a concept of direct sequence ultrawideband (DS-UWB) impulse radio receiver based on a physical neural network. It is proposed to change the traditional way of radio signal processing and use a single neural network instead of a matched filter, a magnitude amplifier and a FPGA processor. The architecture of the physical neural network was designed with an intention to study the behavior of ultrawideband short pulse (UWB-SP) radio signal in near and far radiation zones. The applicability of the neural radio concept is proved by simulation of AWGN communication channel for multiuser environment and real time RX signal processing by the designed neural network. The paper contains the results of a numerical modeling of the radiation-reception process and illustrations of the neural network training process. The lens impulse radiation antenna is considered as radiator of transient electromagnetic field for simulation. The radiation process is modeled with the help of the antenna’s transient response obtained using the evolution approach and the superposition principle in the form of Duhamel integral. The prospects of using the proposed methodology in the problems of the Internet of Things are analyzed. The study shows that using the proposed method allows solving multipathing and multiuser problems even in near radiation zone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Changes in the characteristics of silicon photovoltaic cells of solar arrays after current overloads Electrical conductivity of thermosensitive glass-ceramics based on nanosized vanadium dioxide Resistive humidity sensors based on nanocellulose films for biodegradable electronics Synchronization of pulsed and continuous-wave IMPATT oscillators in the millimeter wavelength range. Part 2. Stabilizing microwave parameters of synchronized generators Matrix calculation of correlation characteristics based on spectral methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1