半自动化测量cobb角从三维网格模型的脊柱侧凸

Uros Petkovic, Robert Korez, T. Vrtovec
{"title":"半自动化测量cobb角从三维网格模型的脊柱侧凸","authors":"Uros Petkovic, Robert Korez, T. Vrtovec","doi":"10.1109/ISPA.2017.8073584","DOIUrl":null,"url":null,"abstract":"The Cobb angle is the main diagnostic parameter for evaluating spinal deformities. Traditionally, it is measured on two-dimensional coronal radiographic (X-ray) images. In this study, we present a semi-automated algorithm for the evaluation of the Cobb angle from three-dimensional mesh models of the spine. The method was tested on 22 spine models, and the obtained mean absolute error of 2.89° against reference measurements indicates that the method performs well.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semi-automated measurement of the cobb angle from 3D mesh models of the scoliotic spine\",\"authors\":\"Uros Petkovic, Robert Korez, T. Vrtovec\",\"doi\":\"10.1109/ISPA.2017.8073584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cobb angle is the main diagnostic parameter for evaluating spinal deformities. Traditionally, it is measured on two-dimensional coronal radiographic (X-ray) images. In this study, we present a semi-automated algorithm for the evaluation of the Cobb angle from three-dimensional mesh models of the spine. The method was tested on 22 spine models, and the obtained mean absolute error of 2.89° against reference measurements indicates that the method performs well.\",\"PeriodicalId\":117602,\"journal\":{\"name\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2017.8073584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Cobb角是评价脊柱畸形的主要诊断参数。传统上,它是在二维冠状射线(x射线)图像上测量的。在这项研究中,我们提出了一种半自动算法,用于从脊柱的三维网格模型评估Cobb角。对22个脊柱模型进行了测试,与参考测量值的平均绝对误差为2.89°,表明该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-automated measurement of the cobb angle from 3D mesh models of the scoliotic spine
The Cobb angle is the main diagnostic parameter for evaluating spinal deformities. Traditionally, it is measured on two-dimensional coronal radiographic (X-ray) images. In this study, we present a semi-automated algorithm for the evaluation of the Cobb angle from three-dimensional mesh models of the spine. The method was tested on 22 spine models, and the obtained mean absolute error of 2.89° against reference measurements indicates that the method performs well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time chest compression rate detection from smartphone video Image registration with subpixel accuracy of DCT-sign phase correlation with real subpixel shifted images Choosing an accurate number of mel frequency cepstral coefficients for audio classification purpose Blind determination of quality of JPEG compressed images Differentiating ureter and arteries in the pelvic via endoscope using deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1