只为你泄露的内容付费:利用沙箱进行微创浏览器指纹防御

Ryan Torok, A. Levy
{"title":"只为你泄露的内容付费:利用沙箱进行微创浏览器指纹防御","authors":"Ryan Torok, A. Levy","doi":"10.1109/SP46215.2023.10179385","DOIUrl":null,"url":null,"abstract":"We present Sandcastle, an entropy-based browser fingerprinting defense that aims to minimize its interference with legitimate web applications. Sandcastle allows developers to partition code that operates on identifiable information into sandboxes to prove to the browser the information cannot be sent in any network request. Meanwhile, sandboxes may make full use of identifiable information on the client side, including writing to dedicated regions of the Document Object Model. For applications where this policy is too strict, Sandcastle provides an expressive cashier that allows precise control over the granularity of data that is leaked to the network. These features allow Sandcastle to eliminate most or all of the noise added to the outputs of identifiable APIs by Chrome’s Privacy Budget framework, the current state of the art in entropy-based fingerprinting defenses. Enabling unlimited client-side use of identifiable information allows for a much more comprehensive set of web applications to run under a fingerprinting defense, such as 3D games and video streaming, and provides a mechanism to expand the space of APIs that can be introduced to the web ecosystem without sacrificing privacy.","PeriodicalId":439989,"journal":{"name":"2023 IEEE Symposium on Security and Privacy (SP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Only Pay for What You Leak: Leveraging Sandboxes for a Minimally Invasive Browser Fingerprinting Defense\",\"authors\":\"Ryan Torok, A. Levy\",\"doi\":\"10.1109/SP46215.2023.10179385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Sandcastle, an entropy-based browser fingerprinting defense that aims to minimize its interference with legitimate web applications. Sandcastle allows developers to partition code that operates on identifiable information into sandboxes to prove to the browser the information cannot be sent in any network request. Meanwhile, sandboxes may make full use of identifiable information on the client side, including writing to dedicated regions of the Document Object Model. For applications where this policy is too strict, Sandcastle provides an expressive cashier that allows precise control over the granularity of data that is leaked to the network. These features allow Sandcastle to eliminate most or all of the noise added to the outputs of identifiable APIs by Chrome’s Privacy Budget framework, the current state of the art in entropy-based fingerprinting defenses. Enabling unlimited client-side use of identifiable information allows for a much more comprehensive set of web applications to run under a fingerprinting defense, such as 3D games and video streaming, and provides a mechanism to expand the space of APIs that can be introduced to the web ecosystem without sacrificing privacy.\",\"PeriodicalId\":439989,\"journal\":{\"name\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP46215.2023.10179385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP46215.2023.10179385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍Sandcastle,一个基于熵的浏览器指纹防御,旨在最大限度地减少其对合法web应用程序的干扰。Sandcastle允许开发人员将操作可识别信息的代码划分到沙盒中,以向浏览器证明该信息不能在任何网络请求中发送。同时,沙箱可以充分利用客户端的可识别信息,包括写入文档对象模型的专用区域。对于该策略过于严格的应用程序,Sandcastle提供了一个表达性的收银员,允许对泄露到网络的数据粒度进行精确控制。这些功能允许Sandcastle消除大部分或所有添加到Chrome隐私预算框架的可识别api输出的噪音,这是目前基于熵的指纹防御技术的最新状态。允许客户端无限制地使用可识别信息,可以让更全面的web应用程序在指纹防御下运行,比如3D游戏和视频流,并提供一种机制来扩展api的空间,这些api可以在不牺牲隐私的情况下引入网络生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Only Pay for What You Leak: Leveraging Sandboxes for a Minimally Invasive Browser Fingerprinting Defense
We present Sandcastle, an entropy-based browser fingerprinting defense that aims to minimize its interference with legitimate web applications. Sandcastle allows developers to partition code that operates on identifiable information into sandboxes to prove to the browser the information cannot be sent in any network request. Meanwhile, sandboxes may make full use of identifiable information on the client side, including writing to dedicated regions of the Document Object Model. For applications where this policy is too strict, Sandcastle provides an expressive cashier that allows precise control over the granularity of data that is leaked to the network. These features allow Sandcastle to eliminate most or all of the noise added to the outputs of identifiable APIs by Chrome’s Privacy Budget framework, the current state of the art in entropy-based fingerprinting defenses. Enabling unlimited client-side use of identifiable information allows for a much more comprehensive set of web applications to run under a fingerprinting defense, such as 3D games and video streaming, and provides a mechanism to expand the space of APIs that can be introduced to the web ecosystem without sacrificing privacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TeSec: Accurate Server-side Attack Investigation for Web Applications PLA-LiDAR: Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle One Key to Rule Them All: Secure Group Pairing for Heterogeneous IoT Devices SoK: Cryptographic Neural-Network Computation SoK: A Critical Evaluation of Efficient Website Fingerprinting Defenses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1