基于分解的改进多目标优化算法

Wanliang Wang, Zheng Wang, Guoqing Li, Senliang Ying
{"title":"基于分解的改进多目标优化算法","authors":"Wanliang Wang, Zheng Wang, Guoqing Li, Senliang Ying","doi":"10.1109/ICICIP47338.2019.9012138","DOIUrl":null,"url":null,"abstract":"In view of the improved algorithm MOEA/D-AU based on the framework of the decomposition based multi objective optimization algorithm framework (MOEA/D), an adaptive dynamic selection angle adjustment strategy is introduced to balance between convergence and diversity. This paper proposed an adaptive angle selection multi-objective optimization algorithm, MOEA/D-AAU. The algorithm adaptively adjusts the angle range selection coefficient $G$ in the MOEA/D-AU algorithm by using the appropriate dynamic adjustment strategy, which makes the algorithm focus on the convergent back propagation dispersion in the convergence process. Finally, the performance of proposed algorithm is compared with four the state of the art algorithms on DTLZ and WFG benchmark function. Experiments result demonstrated that MOEA/D-AAU algorithm can achieve better Pareto-optimal solutions and obtain a good convergence and diversity in solution space.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved multi-objective optimization algorithm based on decomposition\",\"authors\":\"Wanliang Wang, Zheng Wang, Guoqing Li, Senliang Ying\",\"doi\":\"10.1109/ICICIP47338.2019.9012138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the improved algorithm MOEA/D-AU based on the framework of the decomposition based multi objective optimization algorithm framework (MOEA/D), an adaptive dynamic selection angle adjustment strategy is introduced to balance between convergence and diversity. This paper proposed an adaptive angle selection multi-objective optimization algorithm, MOEA/D-AAU. The algorithm adaptively adjusts the angle range selection coefficient $G$ in the MOEA/D-AU algorithm by using the appropriate dynamic adjustment strategy, which makes the algorithm focus on the convergent back propagation dispersion in the convergence process. Finally, the performance of proposed algorithm is compared with four the state of the art algorithms on DTLZ and WFG benchmark function. Experiments result demonstrated that MOEA/D-AAU algorithm can achieve better Pareto-optimal solutions and obtain a good convergence and diversity in solution space.\",\"PeriodicalId\":431872,\"journal\":{\"name\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP47338.2019.9012138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对基于分解的多目标优化算法框架(MOEA/D)框架的改进算法MOEA/D- au,引入自适应动态选择角度调整策略,在收敛性和多样性之间取得平衡。提出了一种自适应角度选择多目标优化算法MOEA/D-AAU。该算法采用适当的动态调整策略自适应调整MOEA/D-AU算法中的角度范围选择系数$G$,使算法在收敛过程中关注收敛的反向传播色散。最后,在DTLZ和WFG基准函数上,与现有的四种算法进行了性能比较。实验结果表明,MOEA/D-AAU算法可以获得较好的pareto最优解,并在解空间上具有较好的收敛性和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved multi-objective optimization algorithm based on decomposition
In view of the improved algorithm MOEA/D-AU based on the framework of the decomposition based multi objective optimization algorithm framework (MOEA/D), an adaptive dynamic selection angle adjustment strategy is introduced to balance between convergence and diversity. This paper proposed an adaptive angle selection multi-objective optimization algorithm, MOEA/D-AAU. The algorithm adaptively adjusts the angle range selection coefficient $G$ in the MOEA/D-AU algorithm by using the appropriate dynamic adjustment strategy, which makes the algorithm focus on the convergent back propagation dispersion in the convergence process. Finally, the performance of proposed algorithm is compared with four the state of the art algorithms on DTLZ and WFG benchmark function. Experiments result demonstrated that MOEA/D-AAU algorithm can achieve better Pareto-optimal solutions and obtain a good convergence and diversity in solution space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Robot Autonomous Exploration and Navigation in Large-scale Indoor Environments Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification Sparse Coding with Outliers A Novel Fuzzy Logic Control on the FVVT Lift of Internal Combustion Engine Adaptive Fuzzy Compensation Control of MIMO Stochastic Nonlinear Systems with Input Hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1