用判别图像滤波学习强化冲浪描述符:在人脸识别中的应用

Hamdi Jamel Bouchech, S. Foufou, M. Abidi
{"title":"用判别图像滤波学习强化冲浪描述符:在人脸识别中的应用","authors":"Hamdi Jamel Bouchech, S. Foufou, M. Abidi","doi":"10.1109/ICM.2014.7071825","DOIUrl":null,"url":null,"abstract":"Face recognition in extreme situations is still challenging to researchers. While several algorithms have shown great recognition results in ideal conditions, accuracy decreases when recognition tasks present a high illumination variation. In this paper, we propose to add two components to the recognition system to make the surf descriptor efficient in such extreme situations. First, we learn a discriminant image filter that maximizes the discrimination of surf. Second, the obtained discriminant SURF(d-surf) is further strengthened by using multispectral images instead of broad band images. DSURF and multispectral d-surf (MD-SURF) were evaluated against two face databases: the feret database, which served as a benchmark, and the iris-m3 multispectral face database, which presented sun lighted faces. Our algorithms have been evaluated against three state-of-the-art algorithms that are MBLBP, HGPP and LGBPHS. The results validated the superiority of D-SURF over the traditional surf descriptor, while MD-SURF performed best out of all studied algorithms.","PeriodicalId":107354,"journal":{"name":"2014 26th International Conference on Microelectronics (ICM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Strengthening surf descriptor with discriminant image filter learning: application to face recognition\",\"authors\":\"Hamdi Jamel Bouchech, S. Foufou, M. Abidi\",\"doi\":\"10.1109/ICM.2014.7071825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition in extreme situations is still challenging to researchers. While several algorithms have shown great recognition results in ideal conditions, accuracy decreases when recognition tasks present a high illumination variation. In this paper, we propose to add two components to the recognition system to make the surf descriptor efficient in such extreme situations. First, we learn a discriminant image filter that maximizes the discrimination of surf. Second, the obtained discriminant SURF(d-surf) is further strengthened by using multispectral images instead of broad band images. DSURF and multispectral d-surf (MD-SURF) were evaluated against two face databases: the feret database, which served as a benchmark, and the iris-m3 multispectral face database, which presented sun lighted faces. Our algorithms have been evaluated against three state-of-the-art algorithms that are MBLBP, HGPP and LGBPHS. The results validated the superiority of D-SURF over the traditional surf descriptor, while MD-SURF performed best out of all studied algorithms.\",\"PeriodicalId\":107354,\"journal\":{\"name\":\"2014 26th International Conference on Microelectronics (ICM)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 26th International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2014.7071825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 26th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2014.7071825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

极端情况下的人脸识别对研究人员来说仍然是一个挑战。虽然有几种算法在理想条件下显示出很好的识别结果,但当识别任务呈现高光照变化时,准确性会降低。在本文中,我们建议在识别系统中增加两个组件,以使冲浪描述符在这种极端情况下有效。首先,我们学习了一个判别图像滤波器,最大限度地提高了surf的辨别能力。其次,利用多光谱图像代替宽带图像,进一步增强得到的判别SURF(d-surf);DSURF和多光谱d-surf (MD-SURF)分别以feret数据库和iris-m3多光谱人脸数据库为基准进行评价。我们的算法已经与MBLBP, HGPP和LGBPHS这三种最先进的算法进行了评估。结果验证了D-SURF优于传统的冲浪描述符,而MD-SURF在所有研究算法中表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strengthening surf descriptor with discriminant image filter learning: application to face recognition
Face recognition in extreme situations is still challenging to researchers. While several algorithms have shown great recognition results in ideal conditions, accuracy decreases when recognition tasks present a high illumination variation. In this paper, we propose to add two components to the recognition system to make the surf descriptor efficient in such extreme situations. First, we learn a discriminant image filter that maximizes the discrimination of surf. Second, the obtained discriminant SURF(d-surf) is further strengthened by using multispectral images instead of broad band images. DSURF and multispectral d-surf (MD-SURF) were evaluated against two face databases: the feret database, which served as a benchmark, and the iris-m3 multispectral face database, which presented sun lighted faces. Our algorithms have been evaluated against three state-of-the-art algorithms that are MBLBP, HGPP and LGBPHS. The results validated the superiority of D-SURF over the traditional surf descriptor, while MD-SURF performed best out of all studied algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Haralick features for GEI-based human gait recognition Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of EEG data LVDS receiver with 7mW consumption at 1.5 Gbps Concatenation of dictionaries for recovery of ECG signals using compressed sensing techniques Effect of device, size, activation energy, temperature, and frequency on memristor switching time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1