{"title":"学会指导学习","authors":"Dagui Chen, Feng Chen","doi":"10.1145/3305275.3305288","DOIUrl":null,"url":null,"abstract":"One reason why deep neural networks require lots of data is that most current training methods are only driven by the task goal information. We propose a novel instructor which can guide networks to learn useful abstraction. Since the instructor provides additional learning power, the efficiency of data is significantly improved. To get appropriate instructor, we design a generative instructor mechanism which supports learning an instructor generator from multiple tasks. The generator can generate the corresponding instructor for different tasks by using fast weights. Experiment results demonstrate the efficiency and robustness of the generated instructor. Meanwhile, our generator also shows the property relating to continuous learning.","PeriodicalId":370976,"journal":{"name":"Proceedings of the International Symposium on Big Data and Artificial Intelligence","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Instruct Learning\",\"authors\":\"Dagui Chen, Feng Chen\",\"doi\":\"10.1145/3305275.3305288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One reason why deep neural networks require lots of data is that most current training methods are only driven by the task goal information. We propose a novel instructor which can guide networks to learn useful abstraction. Since the instructor provides additional learning power, the efficiency of data is significantly improved. To get appropriate instructor, we design a generative instructor mechanism which supports learning an instructor generator from multiple tasks. The generator can generate the corresponding instructor for different tasks by using fast weights. Experiment results demonstrate the efficiency and robustness of the generated instructor. Meanwhile, our generator also shows the property relating to continuous learning.\",\"PeriodicalId\":370976,\"journal\":{\"name\":\"Proceedings of the International Symposium on Big Data and Artificial Intelligence\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Symposium on Big Data and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3305275.3305288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium on Big Data and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3305275.3305288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络需要大量数据的一个原因是,目前大多数训练方法仅由任务目标信息驱动。我们提出了一种新的指导网络学习有用抽象的指导器。由于讲师提供了额外的学习能力,数据的效率显著提高。为了获得合适的讲师,我们设计了一种生成式讲师机制,支持从多个任务中学习讲师生成器。该生成器可以通过快速权重生成不同任务的相应指导员。实验结果证明了该方法的有效性和鲁棒性。同时,我们的生成器也表现出了持续学习的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning to Instruct Learning
One reason why deep neural networks require lots of data is that most current training methods are only driven by the task goal information. We propose a novel instructor which can guide networks to learn useful abstraction. Since the instructor provides additional learning power, the efficiency of data is significantly improved. To get appropriate instructor, we design a generative instructor mechanism which supports learning an instructor generator from multiple tasks. The generator can generate the corresponding instructor for different tasks by using fast weights. Experiment results demonstrate the efficiency and robustness of the generated instructor. Meanwhile, our generator also shows the property relating to continuous learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Simulation of Four-DOF Handling Robot under Different Driving Modes Proceedings of the International Symposium on Big Data and Artificial Intelligence Design of Smart Baby Carriage Based on MCU Application of Internet of Things Technology in Agricultural Production Considerations of the Paradigms of Urban Design Teaching Application about Big Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1