VLSP 2021 - VieCap4H挑战:越南医疗保健领域的自动图像标题生成

P. Phan
{"title":"VLSP 2021 - VieCap4H挑战:越南医疗保健领域的自动图像标题生成","authors":"P. Phan","doi":"10.25073/2588-1086/vnucsce.364","DOIUrl":null,"url":null,"abstract":"Machine reading comprehension (MRC) is a challenging Natural Language Processing (NLP) research fieldand wide real-world applications. The great progress of this field in recents is mainly due to the emergence offew datasets for machine reading comprehension tasks with large sizes and deep learning. For the Vietnameselanguage, some datasets, such as UIT-ViQuAD [1] and UIT-ViNewsQA [2], most recently, UIT-ViQuAD 2.0 [3] - adataset of the competitive VLSP 2021-MRC Shared Task 1 . MRC systems must not only answer questions whennecessary but also tactfully abstain from answering when no answer is available according to the given passage.In this paper, we proposed two types of joint models for answerability prediction and pure-MRC prediction with/without a dependency mechanism to learn the correlation between a start position and end position in pure-MRCoutput prediction. Besides, we use ensemble models and a verification strategy by voting the best answer from thetop K answers of different models. Our proposed approach is evaluated on the benchmark VLSP 2021-MRC SharedTask challenge dataset UIT-ViQuAD 2.0 [3] shows that our approach is significantly better than the baseline.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VLSP 2021 - VieCap4H Challenge: Automatic Image Caption Generation for Healthcare Domain in Vietnamese\",\"authors\":\"P. Phan\",\"doi\":\"10.25073/2588-1086/vnucsce.364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine reading comprehension (MRC) is a challenging Natural Language Processing (NLP) research fieldand wide real-world applications. The great progress of this field in recents is mainly due to the emergence offew datasets for machine reading comprehension tasks with large sizes and deep learning. For the Vietnameselanguage, some datasets, such as UIT-ViQuAD [1] and UIT-ViNewsQA [2], most recently, UIT-ViQuAD 2.0 [3] - adataset of the competitive VLSP 2021-MRC Shared Task 1 . MRC systems must not only answer questions whennecessary but also tactfully abstain from answering when no answer is available according to the given passage.In this paper, we proposed two types of joint models for answerability prediction and pure-MRC prediction with/without a dependency mechanism to learn the correlation between a start position and end position in pure-MRCoutput prediction. Besides, we use ensemble models and a verification strategy by voting the best answer from thetop K answers of different models. Our proposed approach is evaluated on the benchmark VLSP 2021-MRC SharedTask challenge dataset UIT-ViQuAD 2.0 [3] shows that our approach is significantly better than the baseline.\",\"PeriodicalId\":416488,\"journal\":{\"name\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1086/vnucsce.364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器阅读理解(MRC)是一个具有挑战性的自然语言处理(NLP)研究领域和广泛的现实应用。近年来该领域的巨大进步主要是由于出现了一些用于大规模和深度学习的机器阅读理解任务的数据集。对于越南语,一些数据集,如unit - viquad[1]和unit - viquad[2],最近,unit - viquad 2.0[3] -竞争的VLSP 2021-MRC共享任务1的数据集。MRC系统不仅要在必要时回答问题,而且要机智地避免在没有答案时根据给定的文章回答问题。为了学习纯mrc输出预测中起始位置和结束位置之间的相关性,本文提出了两种联合模型,分别用于可答性预测和纯mrc预测,其中有/没有依赖机制。此外,我们使用集成模型和验证策略,从不同模型的前K个答案中投票选出最佳答案。我们提出的方法在基准VLSP 2021-MRC SharedTask挑战数据集unit - viquad 2.0[3]上进行了评估,结果表明我们的方法明显优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VLSP 2021 - VieCap4H Challenge: Automatic Image Caption Generation for Healthcare Domain in Vietnamese
Machine reading comprehension (MRC) is a challenging Natural Language Processing (NLP) research fieldand wide real-world applications. The great progress of this field in recents is mainly due to the emergence offew datasets for machine reading comprehension tasks with large sizes and deep learning. For the Vietnameselanguage, some datasets, such as UIT-ViQuAD [1] and UIT-ViNewsQA [2], most recently, UIT-ViQuAD 2.0 [3] - adataset of the competitive VLSP 2021-MRC Shared Task 1 . MRC systems must not only answer questions whennecessary but also tactfully abstain from answering when no answer is available according to the given passage.In this paper, we proposed two types of joint models for answerability prediction and pure-MRC prediction with/without a dependency mechanism to learn the correlation between a start position and end position in pure-MRCoutput prediction. Besides, we use ensemble models and a verification strategy by voting the best answer from thetop K answers of different models. Our proposed approach is evaluated on the benchmark VLSP 2021-MRC SharedTask challenge dataset UIT-ViQuAD 2.0 [3] shows that our approach is significantly better than the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers A Bandwidth-Efficient High-Performance RTL-Microarchitecture of 2D-Convolution for Deep Neural Networks Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network FRSL: A Domain Specific Language to Specify Functional Requirements A Contract-Based Specification Method for Model Transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1