基于可穿戴设备心肺信号的自适应睡眠/觉醒分类

W. Karlen, C. Mattiussi, D. Floreano
{"title":"基于可穿戴设备心肺信号的自适应睡眠/觉醒分类","authors":"W. Karlen, C. Mattiussi, D. Floreano","doi":"10.1109/BIOCAS.2007.4463344","DOIUrl":null,"url":null,"abstract":"In this paper we describe a method to classify online sleep/wake states of humans based on cardiorespiratory signals for wearable applications. The method is designed to be embedded in a portable microcontroller device and to cope with the resulting tight power restrictions. The method uses a Fast Fourier Transform as the main feature extraction method and an adaptive feed-forward Artificial Neural Network as a classifier. Results show that when the network is trained on a single user, it can correctly classify on average 95.4% of unseen data from the same user. The accuracy of the method in multi-user conditions is lower (89.4%). This is still comparable to actigraphy methods, but our method classifies wake periods considerably better.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Adaptive Sleep/Wake Classification Based on Cardiorespiratory Signals for Wearable Devices\",\"authors\":\"W. Karlen, C. Mattiussi, D. Floreano\",\"doi\":\"10.1109/BIOCAS.2007.4463344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a method to classify online sleep/wake states of humans based on cardiorespiratory signals for wearable applications. The method is designed to be embedded in a portable microcontroller device and to cope with the resulting tight power restrictions. The method uses a Fast Fourier Transform as the main feature extraction method and an adaptive feed-forward Artificial Neural Network as a classifier. Results show that when the network is trained on a single user, it can correctly classify on average 95.4% of unseen data from the same user. The accuracy of the method in multi-user conditions is lower (89.4%). This is still comparable to actigraphy methods, but our method classifies wake periods considerably better.\",\"PeriodicalId\":273819,\"journal\":{\"name\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2007.4463344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们描述了一种基于可穿戴应用的心肺信号对人类在线睡眠/觉醒状态进行分类的方法。该方法被设计为嵌入便携式微控制器设备中,以应对由此产生的严格功率限制。该方法采用快速傅里叶变换作为主要特征提取方法,采用自适应前馈人工神经网络作为分类器。结果表明,当对单个用户进行训练时,该网络对来自同一用户的未见数据的平均正确分类率为95.4%。在多用户条件下,该方法的准确率较低(89.4%)。这仍然可以与活动描记法相媲美,但我们的方法对尾流周期的分类要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Sleep/Wake Classification Based on Cardiorespiratory Signals for Wearable Devices
In this paper we describe a method to classify online sleep/wake states of humans based on cardiorespiratory signals for wearable applications. The method is designed to be embedded in a portable microcontroller device and to cope with the resulting tight power restrictions. The method uses a Fast Fourier Transform as the main feature extraction method and an adaptive feed-forward Artificial Neural Network as a classifier. Results show that when the network is trained on a single user, it can correctly classify on average 95.4% of unseen data from the same user. The accuracy of the method in multi-user conditions is lower (89.4%). This is still comparable to actigraphy methods, but our method classifies wake periods considerably better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform Efficient Computation of the LF/HF Ratio in Heart Rate Variability Analysis Based on Bitstream Filtering On the Swept-threshold Sampling in UWB Medical Radar Long-term monitoring of electrochemical parameters from stimulated neural tissues A Mixed-Signal Multi-Chip Neural Recording Interface with Bandwidth Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1