机会网络的推理和预测,以改善数据传播

C. O. Rolim, C. Geyer
{"title":"机会网络的推理和预测,以改善数据传播","authors":"C. O. Rolim, C. Geyer","doi":"10.1145/2482767.2482782","DOIUrl":null,"url":null,"abstract":"Opportunistic networks exploits social behavior to build connectivity opportunities. This paradigm uses pair-wise contact to share and forward content without any prior knowledge about pre-existing infrastructure. In this context, optimize data dissemination among nodes is a paramount. This paper presents early stages of our research with focus on reasoning and predictions issues to improve data dissemination on opportunistic networks. We intend to explore contextual and social aspects with machine learning techniques in the design of a reasoning and prediction engine for this purpose.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"11 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reasoning and prediction on opportunistic networks to improve data dissemination\",\"authors\":\"C. O. Rolim, C. Geyer\",\"doi\":\"10.1145/2482767.2482782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opportunistic networks exploits social behavior to build connectivity opportunities. This paradigm uses pair-wise contact to share and forward content without any prior knowledge about pre-existing infrastructure. In this context, optimize data dissemination among nodes is a paramount. This paper presents early stages of our research with focus on reasoning and predictions issues to improve data dissemination on opportunistic networks. We intend to explore contextual and social aspects with machine learning techniques in the design of a reasoning and prediction engine for this purpose.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"11 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2482767.2482782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482767.2482782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机会主义网络利用社会行为来建立连接机会。这种范例使用成对接触来共享和转发内容,而无需事先了解已有的基础设施。在这种情况下,优化节点之间的数据传播是至关重要的。本文介绍了我们研究的早期阶段,重点是推理和预测问题,以改善机会主义网络上的数据传播。我们打算利用机器学习技术在设计推理和预测引擎时探索上下文和社会方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reasoning and prediction on opportunistic networks to improve data dissemination
Opportunistic networks exploits social behavior to build connectivity opportunities. This paradigm uses pair-wise contact to share and forward content without any prior knowledge about pre-existing infrastructure. In this context, optimize data dissemination among nodes is a paramount. This paper presents early stages of our research with focus on reasoning and predictions issues to improve data dissemination on opportunistic networks. We intend to explore contextual and social aspects with machine learning techniques in the design of a reasoning and prediction engine for this purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategies for improving performance and energy efficiency on a many-core Cost-effective soft-error protection for SRAM-based structures in GPGPUs Kinship: efficient resource management for performance and functionally asymmetric platforms An algorithm for parallel calculation of trigonometric functions DCNSim: a unified and cross-layer computer architecture simulation framework for data center network research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1