位于地形上的平行多观察者

Wenli Li, W. Randolph Franklin, Daniel N. Benedetti, S. V. G. Magalhães
{"title":"位于地形上的平行多观察者","authors":"Wenli Li, W. Randolph Franklin, Daniel N. Benedetti, S. V. G. Magalhães","doi":"10.1145/2666310.2666486","DOIUrl":null,"url":null,"abstract":"This paper presents the optimization and parallelization of the multiple observer siting program, originally developed by Franklin and Vogt. Siting is a compute-intensive application with a large amount of inherent parallelism. The advantage of parallelization is not only a faster program but also the ability to solve bigger problems. We have parallelized the program using two different techniques: OpenMP, using multi-core CPUs, and CUDA, using a general purpose graphics processing unit (GPGPU). Experiment results show that both techniques are very effective. Using the OpenMP program, we are able to site tens of thousands of observers on a 16385 × 16385 terrain in less than 2 minutes, on our workstation with two CPUs and one GPU. The CUDA program achieves the same in about 30 seconds.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel multiple observer siting on terrain\",\"authors\":\"Wenli Li, W. Randolph Franklin, Daniel N. Benedetti, S. V. G. Magalhães\",\"doi\":\"10.1145/2666310.2666486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the optimization and parallelization of the multiple observer siting program, originally developed by Franklin and Vogt. Siting is a compute-intensive application with a large amount of inherent parallelism. The advantage of parallelization is not only a faster program but also the ability to solve bigger problems. We have parallelized the program using two different techniques: OpenMP, using multi-core CPUs, and CUDA, using a general purpose graphics processing unit (GPGPU). Experiment results show that both techniques are very effective. Using the OpenMP program, we are able to site tens of thousands of observers on a 16385 × 16385 terrain in less than 2 minutes, on our workstation with two CPUs and one GPU. The CUDA program achieves the same in about 30 seconds.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了由Franklin和Vogt最初开发的多观测点定位程序的优化和并行化。站点是具有大量固有并行性的计算密集型应用程序。并行化的优点不仅是程序更快,而且能够解决更大的问题。我们使用两种不同的技术并行化程序:使用多核cpu的OpenMP和使用通用图形处理单元(GPGPU)的CUDA。实验结果表明,这两种方法都是非常有效的。使用OpenMP程序,我们能够在不到2分钟的时间内在一个16385 × 16385的地形上定位成千上万的观察者,我们的工作站有两个cpu和一个GPU。CUDA程序在大约30秒内实现相同的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel multiple observer siting on terrain
This paper presents the optimization and parallelization of the multiple observer siting program, originally developed by Franklin and Vogt. Siting is a compute-intensive application with a large amount of inherent parallelism. The advantage of parallelization is not only a faster program but also the ability to solve bigger problems. We have parallelized the program using two different techniques: OpenMP, using multi-core CPUs, and CUDA, using a general purpose graphics processing unit (GPGPU). Experiment results show that both techniques are very effective. Using the OpenMP program, we are able to site tens of thousands of observers on a 16385 × 16385 terrain in less than 2 minutes, on our workstation with two CPUs and one GPU. The CUDA program achieves the same in about 30 seconds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1