异构计算平台上定向梯度直方图的软硬件协同设计

Yuan-Kai Wang, Hung-Yu Chen, Kuan-Yu Chen, Shih-Yu Huang
{"title":"异构计算平台上定向梯度直方图的软硬件协同设计","authors":"Yuan-Kai Wang, Hung-Yu Chen, Kuan-Yu Chen, Shih-Yu Huang","doi":"10.1109/ICMLC48188.2019.8949276","DOIUrl":null,"url":null,"abstract":"Histogram of oriented gradients (HOG) is a highly important feature representation in computer vision for many applications such as objection detection. The HOG computes local histograms of oriented gradients of pixel luminance on a dense grid of uniformly spaced cells and normalized to be a feature vector. Its computational complexity is high, and its implementation on edge computing and embedded devices is challenging. This paper proposes a hardware software codesign strategy to redesign the HOG algorithm. Pipelining and hardware acceleration by FPGA are applied in the design to the performance improvement of HOG. The design is implemented on a heterogeneous computing platform and with high level synthesis techniques exploiting C-code to accelerate the design of hardware circuits. Our results of full HD images achieve 500 times speed-up compared with software implementation.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware-Software Codesign of Histogram of Oriented Gradients on Heterogeneous Computing Platform\",\"authors\":\"Yuan-Kai Wang, Hung-Yu Chen, Kuan-Yu Chen, Shih-Yu Huang\",\"doi\":\"10.1109/ICMLC48188.2019.8949276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histogram of oriented gradients (HOG) is a highly important feature representation in computer vision for many applications such as objection detection. The HOG computes local histograms of oriented gradients of pixel luminance on a dense grid of uniformly spaced cells and normalized to be a feature vector. Its computational complexity is high, and its implementation on edge computing and embedded devices is challenging. This paper proposes a hardware software codesign strategy to redesign the HOG algorithm. Pipelining and hardware acceleration by FPGA are applied in the design to the performance improvement of HOG. The design is implemented on a heterogeneous computing platform and with high level synthesis techniques exploiting C-code to accelerate the design of hardware circuits. Our results of full HD images achieve 500 times speed-up compared with software implementation.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定向梯度直方图(Histogram of oriented gradients, HOG)是计算机视觉中一个非常重要的特征表示方法,可用于目标检测等领域。HOG在均匀间隔的密集网格上计算像素亮度方向梯度的局部直方图,并归一化为特征向量。它的计算复杂度很高,并且在边缘计算和嵌入式设备上的实现具有挑战性。本文提出了一种软硬件协同设计策略来重新设计HOG算法。在设计中采用流水线技术和FPGA硬件加速技术来提高HOG的性能。该设计在异构计算平台上实现,采用高级综合技术,利用c代码加速硬件电路的设计。与软件实现相比,我们的全高清图像的速度提高了500倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware-Software Codesign of Histogram of Oriented Gradients on Heterogeneous Computing Platform
Histogram of oriented gradients (HOG) is a highly important feature representation in computer vision for many applications such as objection detection. The HOG computes local histograms of oriented gradients of pixel luminance on a dense grid of uniformly spaced cells and normalized to be a feature vector. Its computational complexity is high, and its implementation on edge computing and embedded devices is challenging. This paper proposes a hardware software codesign strategy to redesign the HOG algorithm. Pipelining and hardware acceleration by FPGA are applied in the design to the performance improvement of HOG. The design is implemented on a heterogeneous computing platform and with high level synthesis techniques exploiting C-code to accelerate the design of hardware circuits. Our results of full HD images achieve 500 times speed-up compared with software implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Empirical Study on the Classification of Chinese News Articles by Machine Learning and Deep Learning Techniques Posture Estimation Method Using Cushion Type Seat Pressure Sensor Advanced Convolutional Neural Network With Feedforward Inhibition Utilization of the Infrared Image Capturing Combustion State for Estimating the Steam Flow Aming to Stabilize Garbage Power Generation Domain Adaption for Facial Expression Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1