基于RBF神经网络的变速感应电机无传感器控制

Q1 Mathematics Journal of Applied Logic Pub Date : 2017-11-01 DOI:10.1016/j.jal.2016.11.017
Pavel Brandstetter, Martin Kuchar
{"title":"基于RBF神经网络的变速感应电机无传感器控制","authors":"Pavel Brandstetter,&nbsp;Martin Kuchar","doi":"10.1016/j.jal.2016.11.017","DOIUrl":null,"url":null,"abstract":"<div><p>High power of modern digital signal processors and their decreasing prices enable practical implementation of different speed estimators which are used in the sensorless control of AC drives. The paper describes application possibilities of artificial neural networks for the sensorless speed control of the A.C. induction motor drive. In the sensorless control structure of the A.C. drive, there is implemented the speed estimator which uses two different artificial neural networks for speed estimation. The first speed estimator uses a multilayer feedforward artificial neural network. Its properties are compared with the speed estimator using a radial basis function neural network. The sensorless A.C. drive was simulated in program Matlab-Simulink. The main goal of many simulations was finding suitable structure of the artificial neural network with required number of neuron units which will ensure good control characteristics and simultaneously will enable a practical implementation of the artificial neural network in the digital signal processor control system.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"24 ","pages":"Pages 97-108"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.017","citationCount":"26","resultStr":"{\"title\":\"Sensorless control of variable speed induction motor drive using RBF neural network\",\"authors\":\"Pavel Brandstetter,&nbsp;Martin Kuchar\",\"doi\":\"10.1016/j.jal.2016.11.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High power of modern digital signal processors and their decreasing prices enable practical implementation of different speed estimators which are used in the sensorless control of AC drives. The paper describes application possibilities of artificial neural networks for the sensorless speed control of the A.C. induction motor drive. In the sensorless control structure of the A.C. drive, there is implemented the speed estimator which uses two different artificial neural networks for speed estimation. The first speed estimator uses a multilayer feedforward artificial neural network. Its properties are compared with the speed estimator using a radial basis function neural network. The sensorless A.C. drive was simulated in program Matlab-Simulink. The main goal of many simulations was finding suitable structure of the artificial neural network with required number of neuron units which will ensure good control characteristics and simultaneously will enable a practical implementation of the artificial neural network in the digital signal processor control system.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"24 \",\"pages\":\"Pages 97-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.017\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 26

摘要

现代数字信号处理器的高功率及其不断下降的价格使用于交流驱动器无传感器控制的不同速度估计器的实际实施成为可能。介绍了人工神经网络在交流感应电动机无传感器调速中的应用可能性。在交流传动的无传感器控制结构中,实现了用两种不同的人工神经网络进行速度估计的速度估计器。第一个速度估计器采用多层前馈人工神经网络。将其性能与径向基函数神经网络速度估计器进行了比较。在Matlab-Simulink中对无传感器交流传动进行了仿真。许多仿真的主要目标是找到具有所需神经元单元数量的合适的人工神经网络结构,以保证良好的控制特性,同时使人工神经网络在数字信号处理器控制系统中的实际实现成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensorless control of variable speed induction motor drive using RBF neural network

High power of modern digital signal processors and their decreasing prices enable practical implementation of different speed estimators which are used in the sensorless control of AC drives. The paper describes application possibilities of artificial neural networks for the sensorless speed control of the A.C. induction motor drive. In the sensorless control structure of the A.C. drive, there is implemented the speed estimator which uses two different artificial neural networks for speed estimation. The first speed estimator uses a multilayer feedforward artificial neural network. Its properties are compared with the speed estimator using a radial basis function neural network. The sensorless A.C. drive was simulated in program Matlab-Simulink. The main goal of many simulations was finding suitable structure of the artificial neural network with required number of neuron units which will ensure good control characteristics and simultaneously will enable a practical implementation of the artificial neural network in the digital signal processor control system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
期刊最新文献
Editorial Board Editorial Board Formal analysis of SEU mitigation for early dependability and performability analysis of FPGA-based space applications Logical Investigations on Assertion and Denial Natural deduction for bi-intuitionistic logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1