光子数分辨探测器中的随机共振

S. Krishnamoorthy, H. Ravishankar, Pradeep Kumar, A. Prabhakar
{"title":"光子数分辨探测器中的随机共振","authors":"S. Krishnamoorthy, H. Ravishankar, Pradeep Kumar, A. Prabhakar","doi":"10.5220/0005335800400046","DOIUrl":null,"url":null,"abstract":"The photon number statistics of a coherent optical pulse will typically follow a Poissonian distribution. At low photon numbers, a gated avalanche photo-detector (GAPD) is used to detect the presence of photons in each optical pulse. GAPDs use a thresholding logic, but suffer from after-pulsing effects. The efficiency of a GAPD was characterized and its after-pulses were analyzed by looking at the detection patterns obtained. The GAPD was found to show evidence of stochastic resonance which affected the dark noise of the detector. We post-process the detected bit patterns to eliminate the resonances and estimate the true dark count of the detector. The GAPD was then used with a recirculating optical loop to build a multi-photon resolving detector (MPRD). In the MPRD, the probability of detection at consecutive loop round trip times were used to estimate the mean photon number. We quantify these statistics and establish a reliable measure of photon number at an optical power of −94 dBm. The digital electronics was able to store data for 224 optical pulses, making the statistical analysis meaningful.","PeriodicalId":170064,"journal":{"name":"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic resonances in photon number resolving detectors\",\"authors\":\"S. Krishnamoorthy, H. Ravishankar, Pradeep Kumar, A. Prabhakar\",\"doi\":\"10.5220/0005335800400046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photon number statistics of a coherent optical pulse will typically follow a Poissonian distribution. At low photon numbers, a gated avalanche photo-detector (GAPD) is used to detect the presence of photons in each optical pulse. GAPDs use a thresholding logic, but suffer from after-pulsing effects. The efficiency of a GAPD was characterized and its after-pulses were analyzed by looking at the detection patterns obtained. The GAPD was found to show evidence of stochastic resonance which affected the dark noise of the detector. We post-process the detected bit patterns to eliminate the resonances and estimate the true dark count of the detector. The GAPD was then used with a recirculating optical loop to build a multi-photon resolving detector (MPRD). In the MPRD, the probability of detection at consecutive loop round trip times were used to estimate the mean photon number. We quantify these statistics and establish a reliable measure of photon number at an optical power of −94 dBm. The digital electronics was able to store data for 224 optical pulses, making the statistical analysis meaningful.\",\"PeriodicalId\":170064,\"journal\":{\"name\":\"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005335800400046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005335800400046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相干光脉冲的光子数统计通常遵循泊松分布。在低光子数下,门控雪崩光电探测器(GAPD)用于检测每个光脉冲中光子的存在。gapd使用阈值逻辑,但受到后脉冲效应的影响。通过观察所获得的检测模式,对GAPD的效率进行了表征,并对其后脉冲进行了分析。发现GAPD显示随机共振的证据,这影响了探测器的暗噪声。我们对检测到的位模式进行后处理以消除共振并估计检测器的真实暗计数。然后将GAPD与循环光环路一起用于构建多光子分辨探测器(MPRD)。在MPRD中,使用连续环路往返时间的检测概率来估计平均光子数。我们量化了这些统计数据,并在光功率为- 94 dBm时建立了光子数的可靠测量。数字电子学能够存储224个光脉冲的数据,使统计分析有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic resonances in photon number resolving detectors
The photon number statistics of a coherent optical pulse will typically follow a Poissonian distribution. At low photon numbers, a gated avalanche photo-detector (GAPD) is used to detect the presence of photons in each optical pulse. GAPDs use a thresholding logic, but suffer from after-pulsing effects. The efficiency of a GAPD was characterized and its after-pulses were analyzed by looking at the detection patterns obtained. The GAPD was found to show evidence of stochastic resonance which affected the dark noise of the detector. We post-process the detected bit patterns to eliminate the resonances and estimate the true dark count of the detector. The GAPD was then used with a recirculating optical loop to build a multi-photon resolving detector (MPRD). In the MPRD, the probability of detection at consecutive loop round trip times were used to estimate the mean photon number. We quantify these statistics and establish a reliable measure of photon number at an optical power of −94 dBm. The digital electronics was able to store data for 224 optical pulses, making the statistical analysis meaningful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an optimized distal optic for non linear endomicroscopy Optical measurement of temperature in tissue culture surfaces under infrared laser light excitation at 800nm using a fluorescent dye A quick method to determine the impurity content in gold ornaments by LIBS technique Specific electrodynamic features of a plasma channel created in gas by powerful femtosecond UV laser pulse application to the problem of guiding and amplification of microwave radiation High-power simultaneously Q-switched and Kerr-lens mode-locked eye-safe Nd:YAP/YVO4 intracavity Raman laser based on injection locking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1