摩托车手头部运动识别的智能头盔

K. Wong, Yi-Chung Chen, Tzu-Chang Lee, Shengmin Wang
{"title":"摩托车手头部运动识别的智能头盔","authors":"K. Wong, Yi-Chung Chen, Tzu-Chang Lee, Shengmin Wang","doi":"10.1109/ICMLC48188.2019.8949319","DOIUrl":null,"url":null,"abstract":"This paper presents a head motion detection and recognition study using a smart helmet for motorcycle rider which can potential be used for the analysis of behavior of motorcycle riders. The smart helmet is a full face motorcycle helmet integrated with an intelligent system embedded an Inertial Measurement Unit (IMU) sensor. In the analysis, the motions and the corresponding signals are assessed with the video footage with a data acquisition and visualization platform. We introduce a feature extraction methodology to extract the most discriminant features from the signal data, and the head motion recognition problem is formulated as a machine-learning based classification model. Experiment results show that gyroscope sensor data is more useful than accelerometer sensor data for head motion recognition and the classification accuracy for different head motions ranges from 95.9% to 99.1%.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Head Motion Recognition Using a Smart Helmet for Motorcycle Riders\",\"authors\":\"K. Wong, Yi-Chung Chen, Tzu-Chang Lee, Shengmin Wang\",\"doi\":\"10.1109/ICMLC48188.2019.8949319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a head motion detection and recognition study using a smart helmet for motorcycle rider which can potential be used for the analysis of behavior of motorcycle riders. The smart helmet is a full face motorcycle helmet integrated with an intelligent system embedded an Inertial Measurement Unit (IMU) sensor. In the analysis, the motions and the corresponding signals are assessed with the video footage with a data acquisition and visualization platform. We introduce a feature extraction methodology to extract the most discriminant features from the signal data, and the head motion recognition problem is formulated as a machine-learning based classification model. Experiment results show that gyroscope sensor data is more useful than accelerometer sensor data for head motion recognition and the classification accuracy for different head motions ranges from 95.9% to 99.1%.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于智能头盔的摩托车驾驶员头部运动检测与识别方法,为摩托车驾驶员的行为分析提供了一种潜在的方法。智能头盔是一种全面摩托车头盔,集成了嵌入惯性测量单元(IMU)传感器的智能系统。在分析中,通过数据采集和可视化平台对视频片段的运动和相应的信号进行评估。我们引入了一种特征提取方法,从信号数据中提取最具判别性的特征,并将头部运动识别问题制定为基于机器学习的分类模型。实验结果表明,陀螺仪传感器数据比加速度计传感器数据更有利于头部运动识别,对不同头部运动的分类准确率在95.9% ~ 99.1%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Head Motion Recognition Using a Smart Helmet for Motorcycle Riders
This paper presents a head motion detection and recognition study using a smart helmet for motorcycle rider which can potential be used for the analysis of behavior of motorcycle riders. The smart helmet is a full face motorcycle helmet integrated with an intelligent system embedded an Inertial Measurement Unit (IMU) sensor. In the analysis, the motions and the corresponding signals are assessed with the video footage with a data acquisition and visualization platform. We introduce a feature extraction methodology to extract the most discriminant features from the signal data, and the head motion recognition problem is formulated as a machine-learning based classification model. Experiment results show that gyroscope sensor data is more useful than accelerometer sensor data for head motion recognition and the classification accuracy for different head motions ranges from 95.9% to 99.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Empirical Study on the Classification of Chinese News Articles by Machine Learning and Deep Learning Techniques Posture Estimation Method Using Cushion Type Seat Pressure Sensor Advanced Convolutional Neural Network With Feedforward Inhibition Utilization of the Infrared Image Capturing Combustion State for Estimating the Steam Flow Aming to Stabilize Garbage Power Generation Domain Adaption for Facial Expression Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1