基于地形先验知识的自调整路径跟踪控制器的概率方法

A. Prado, F. A. Cheeín, M. Torres-Torriti
{"title":"基于地形先验知识的自调整路径跟踪控制器的概率方法","authors":"A. Prado, F. A. Cheeín, M. Torres-Torriti","doi":"10.1109/IROS.2016.7759479","DOIUrl":null,"url":null,"abstract":"Nowadays, agricultural and mining industry applications require saving energy in mobile robotic tasks. This critical issue encouraged us to enhance the performance of path tracking controllers during manoeuvring over slippery and rough terrains. In this scenario, we propose probabilistic approaches under machine learning schemes in order to optimally self-tune the controller. The approaches are real time implemented and tested in a mining machinery skid steer loader Cat® 262C under gravel and muddy terrains (and their transitions). Finally, experimental results presented in this work show that the performance of the controller enhances up to 20% (average) without compromising saturations in the actuators.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Probabilistic approaches for self-tuning path tracking controllers using prior knowledge of the terrain\",\"authors\":\"A. Prado, F. A. Cheeín, M. Torres-Torriti\",\"doi\":\"10.1109/IROS.2016.7759479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, agricultural and mining industry applications require saving energy in mobile robotic tasks. This critical issue encouraged us to enhance the performance of path tracking controllers during manoeuvring over slippery and rough terrains. In this scenario, we propose probabilistic approaches under machine learning schemes in order to optimally self-tune the controller. The approaches are real time implemented and tested in a mining machinery skid steer loader Cat® 262C under gravel and muddy terrains (and their transitions). Finally, experimental results presented in this work show that the performance of the controller enhances up to 20% (average) without compromising saturations in the actuators.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如今,农业和采矿业的应用需要在移动机器人任务中节省能源。这个关键的问题鼓励我们提高路径跟踪控制器的性能在滑和粗糙的地形上操纵。在这种情况下,我们提出了机器学习方案下的概率方法,以便最优地自调整控制器。这些方法在砂砾和泥泞地形(及其过渡)下的采矿机械滑转装载机Cat®262C上进行了实时实施和测试。最后,在这项工作中提出的实验结果表明,控制器的性能提高高达20%(平均),而不影响执行器的饱和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic approaches for self-tuning path tracking controllers using prior knowledge of the terrain
Nowadays, agricultural and mining industry applications require saving energy in mobile robotic tasks. This critical issue encouraged us to enhance the performance of path tracking controllers during manoeuvring over slippery and rough terrains. In this scenario, we propose probabilistic approaches under machine learning schemes in order to optimally self-tune the controller. The approaches are real time implemented and tested in a mining machinery skid steer loader Cat® 262C under gravel and muddy terrains (and their transitions). Finally, experimental results presented in this work show that the performance of the controller enhances up to 20% (average) without compromising saturations in the actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1