fMRI数据空间功能聚类的连通性特征提取

S. Emeriau, Frédéric Blanchard, J. Poline, L. Pierot, E. Bittar
{"title":"fMRI数据空间功能聚类的连通性特征提取","authors":"S. Emeriau, Frédéric Blanchard, J. Poline, L. Pierot, E. Bittar","doi":"10.1109/IPTA.2010.5586776","DOIUrl":null,"url":null,"abstract":"As fMRI data is high dimensional, applications like connectivity studies, normalization or multivariate analyses, need to reduce data dimension while minimizing the loss of functional information. In our study we use connectivity profiles as a new functional feature to aggregate voxels into clusters. This offers two major advantages in comparison with the current clustering methods. It allows the analyst to deal with the spatial correlation of noise problem, that can lead to bad mergings in the functional domain, and it is based on the whole data independently of a priori information like the General Linear Model (GLM) regressors. We validated that the resulting clusters form a partition of the data in homogeneous regions according to both spatial and functional criteria.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connectivity feature extraction for spatio-functional clustering of fMRI data\",\"authors\":\"S. Emeriau, Frédéric Blanchard, J. Poline, L. Pierot, E. Bittar\",\"doi\":\"10.1109/IPTA.2010.5586776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As fMRI data is high dimensional, applications like connectivity studies, normalization or multivariate analyses, need to reduce data dimension while minimizing the loss of functional information. In our study we use connectivity profiles as a new functional feature to aggregate voxels into clusters. This offers two major advantages in comparison with the current clustering methods. It allows the analyst to deal with the spatial correlation of noise problem, that can lead to bad mergings in the functional domain, and it is based on the whole data independently of a priori information like the General Linear Model (GLM) regressors. We validated that the resulting clusters form a partition of the data in homogeneous regions according to both spatial and functional criteria.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于fMRI数据是高维的,诸如连通性研究、归一化或多变量分析等应用需要在降低数据维数的同时尽量减少功能信息的损失。在我们的研究中,我们使用连接配置文件作为一个新的功能特征来聚集体素到集群中。与当前的聚类方法相比,这提供了两个主要优点。它允许分析者处理噪声的空间相关性问题,这可能导致功能域的不良合并,并且它是基于独立于先验信息的整个数据,如一般线性模型(GLM)回归量。我们根据空间和功能标准验证了所得到的集群在同质区域形成数据的分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Connectivity feature extraction for spatio-functional clustering of fMRI data
As fMRI data is high dimensional, applications like connectivity studies, normalization or multivariate analyses, need to reduce data dimension while minimizing the loss of functional information. In our study we use connectivity profiles as a new functional feature to aggregate voxels into clusters. This offers two major advantages in comparison with the current clustering methods. It allows the analyst to deal with the spatial correlation of noise problem, that can lead to bad mergings in the functional domain, and it is based on the whole data independently of a priori information like the General Linear Model (GLM) regressors. We validated that the resulting clusters form a partition of the data in homogeneous regions according to both spatial and functional criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1