{"title":"一种新型的6T SRAM单元,具有非对称栅极underlap设计的finfet,可增强读取数据的稳定性和写入能力","authors":"S. Salahuddin, Hailong Jiao, V. Kursun","doi":"10.1109/ISQED.2013.6523634","DOIUrl":null,"url":null,"abstract":"A new FinFET memory circuit technique based on asymmetrically gate underlap engineered bitline access transistors is proposed in this paper. The strengths of the asymmetrical bitline access transistors are weakened during read operations while enhanced during write operations as the direction of current flow is reversed. With the proposed asymmetrical six-FinFET SRAM cell, the read data stability and write ability are both enhanced by up to 6.12x and 58%, respectively, without causing any area overhead as compared to the standard symmetrical six-FinFET SRAM cells in a 15nm FinFET technology. The leakage power consumption is also reduced by up to 96.5% with the proposed asymmetrical FinFET SRAM cell as compared to the standard six-FinFET SRAM cells with symmetrical bitline access transistors.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"A novel 6T SRAM cell with asymmetrically gate underlap engineered FinFETs for enhanced read data stability and write ability\",\"authors\":\"S. Salahuddin, Hailong Jiao, V. Kursun\",\"doi\":\"10.1109/ISQED.2013.6523634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new FinFET memory circuit technique based on asymmetrically gate underlap engineered bitline access transistors is proposed in this paper. The strengths of the asymmetrical bitline access transistors are weakened during read operations while enhanced during write operations as the direction of current flow is reversed. With the proposed asymmetrical six-FinFET SRAM cell, the read data stability and write ability are both enhanced by up to 6.12x and 58%, respectively, without causing any area overhead as compared to the standard symmetrical six-FinFET SRAM cells in a 15nm FinFET technology. The leakage power consumption is also reduced by up to 96.5% with the proposed asymmetrical FinFET SRAM cell as compared to the standard six-FinFET SRAM cells with symmetrical bitline access transistors.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel 6T SRAM cell with asymmetrically gate underlap engineered FinFETs for enhanced read data stability and write ability
A new FinFET memory circuit technique based on asymmetrically gate underlap engineered bitline access transistors is proposed in this paper. The strengths of the asymmetrical bitline access transistors are weakened during read operations while enhanced during write operations as the direction of current flow is reversed. With the proposed asymmetrical six-FinFET SRAM cell, the read data stability and write ability are both enhanced by up to 6.12x and 58%, respectively, without causing any area overhead as compared to the standard symmetrical six-FinFET SRAM cells in a 15nm FinFET technology. The leakage power consumption is also reduced by up to 96.5% with the proposed asymmetrical FinFET SRAM cell as compared to the standard six-FinFET SRAM cells with symmetrical bitline access transistors.